solar neutrino oscillations and the recent results of BOREXINO and SNO

Heavy Quarks & Leptons 2010 Frascati, 14 Oct 10

Michael Wurm Lehrstuhl E15, Physik-Department, TU München

photo: BOREXINO calibration

Outline

solar neutrino spectrum

recent results from BOREXINO and SNO

measuring solar v_e survival probabilities

searches for non-standard effects

prospects of future measurements

Solar Radiation

Optical Luminosity: 1360 W/m²

about 2% of that in neutrinos: $\phi_v \approx 6 \times 10^{10} / \text{cm}^2 \text{s}$

Solar neutrino oscillations and the recent results of Borexino and SNO – HQL 2010 Frascati

Michael Wurm

Solar Energy Production

Copyright © 1997 Contemporary Physics Education Project.

Basic fusion reaction: $4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 26.7 \text{ MeV}$ maximum energy of pp-I neutrinos: 420 keV

pp-Chain and CNO-Cycle

- Subbranches of the pp-chain and v's from the CNO cycle contribute at larger energies.
- Standard Solar Model (SSM) predicts neutrino fluxes:

ν's	Energy (MeV)	Flux on Earth (/cm²s)
рр	<0.42	6.0x10 ¹⁰
⁷ Be	0.86	5.1x10 ⁹
рер	1.44	1.4x10 ⁸
⁸ B	<14.6	5.9x10 ⁶
hep	<18.8	7.9x10 ³
CNO	<1.74	5.0x10 ⁸

Solar Neutrino Spectrum

Sudbury Neutrino Observatory SNO

Three detection channels

• charged current interaction (CC) $v_e + D \rightarrow p + p + e^-$

• neutral current interaction (NC) $v_x + D \rightarrow v_x + p + n$

neutrino-electron scattering (CC+NC)

 $v_x + e^- \rightarrow v_x + e^-$

1kt Heavy Water Cherenkov detector

SNO result: Proof of neutrino oscillations

- flavor transition:
 confirmed at 7σ!
- agreement with SSM, if v NC reaction is considered!

measurement of ${}^{8}\text{B-v}$ spectrum above 5 MeV:

Effect of oscillations ~ 1/3 remain as ν_e ~ 2/3 change to $\nu_{\mu,\tau}$

[Phys.Rev.Lett.92:181301,2004] new: [Phys.Rev.C81:055504,2010]

The MSW-LMA Oscillation Scenario

Oscillations in vacuum probability averages over long distances, P_{ee}≈2/3 Matter-enhanced oscillations interaction with solar matter increases osc. probability, P_{ee}≈1/3

Real-Time Spectroscopy of Solar Neutrinos

Real-Time Spectroscopy of Solar Neutrinos

Water Cherenkov Detectors (SNO, Super-K) threshold: 4-5 MeV.

Real-Time Spectroscopy of Solar Neutrinos

Water Cherenkov Detectors (SNO, Super-K) threshold: 4-5 MeV. Since 2007: Measurement of low-energy regime by BOREXINO.

The BOREXINO Experiment

- 300 tons of liquid scintillator
- Solar neutrino detection by neutrino-electron scattering ve → ve
- Iow energy threshold: ~200 keV
- good energy resolution: ~4.5% @ 1MeV
- extremely low radioactive background

OBJECTIVES detection of ...

Iow-energetic solar ν's

geoneutrinos

galactic SN v's

INFN

Milano

Borexino Collaboration

Virginia Tech. University

V

Dubna JINR

(Russia)

Jagiellonian U. Cracow

(Poland)

APC Paris

TECHNISCHE UNIVERSITÄT MÜNCHEN

(Germany)

Munich

(Germany)

633

Princeton University Michael Wurm

Borexino Detector Layout

Internal Radioactivity

traces of radioisotopes in the scintillator (U/Th,⁴⁰K)

Internal Radioactivity

traces of radioisotopes in the scintillator (U/Th,⁴⁰K)

External Gamma-Rays

from buffer, steel sphere, PMT glass (⁴⁰K, ²⁰⁸Tl ...)

Internal Radioactivity

traces of radioisotopes in the scintillator (U/Th,⁴⁰K)

External Gamma-Rays

from buffer, steel sphere, PMT glass (⁴⁰K, ²⁰⁸Tl ...)

Cosmic Muons

Internal Radioactivity

traces of radioisotopes in the scintillator (U/Th,⁴⁰K)

External Gamma-Rays

from buffer, steel sphere, PMT glass (⁴⁰K, ²⁰⁸Tl ...)

Cosmic Muons

Cosmogenics

neutrons and radionuclides from muon-spallation and hadronic showers

Internal Radioactivity

traces of radioisotopes in the scintillator (U/Th,⁴⁰K)

External Gamma-Rays

from buffer, steel sphere, PMT glass (⁴⁰K, ²⁰⁸Tl ...)

Cosmic Muons

Cosmogenics

neutrons and radionuclides from muon-spallation and hadronic showers

Fast Neutrons

from external muons

Borexino is located at the LNGS (Laboratori Nazionali del Gran Sasso)

corresponding rock shielding: 1400 m (3500 m.w.e.) residual cosmic muon flux: ~1/m²h or 4300/d in Bx ID

Borexino measuement of ⁷Be neutrinos

The MSW-LMA Oscillation Scenario

Michael Wurm

BOREXINO: Measuring ⁸B-vs to 3 MeV

SNO: Lowering threshold to 3.5 MeV

Kinetic Energy Spectrum

New results vs. LMA-MSW predictions

BOREXINO (ES)

SNO (CC)

- Borexino and SNO results are in good agreement
- Up to now no conflict with LMA-MSW scenario

Search for modulations in ⁷Be signal

- passage through Earth matter might influence
 v_e survival probability,
 predicted for LOW scenario
- similar effect predicted
 for mass varying neutrinos
 P.C. de Holanda, JCAP07 (2009) 024

search for day/night asymmetry in ⁷Be rate:

$$A_{DN} = \frac{2(N-D)}{N+D}$$

N: rate at night D: rate at day

Model	P _{ee}	A _{DN}
LMA	0.64±0.07	≈0
LOW	0.58±0.05	0.23±0.11
MaVaN		-0.23

Borexino search for day/night effect

Available statistics

⁷Be Day spectrum 387.46 days
⁷Be Night spectrum 401.57 days
Statistical error 2.3 c/d100t

⁷Be rate from fit to separate day and night spectra:

Preliminary result: A_{DN}=-0.007±0.073

excludes LOW and MaVaN at 3σ!

How to proceed from here?

Improve accuracy of ⁷Be result

Current Borexino Result: $49 \pm 3_{stat} \pm 4_{sys} \text{ cpd/100 tons}$

Contribution	error (1 σ)
statistics	± 6%
total scintillator mass	± 0.2%
live time	± 0.1%
efficiency of cuts	± 0.3%
detector response function	n ±6%
fiducial mass	± 6%
total systematics	± 8.5%

Improve accuracy of ⁷Be result

error (1σ)

± 6%

± 0.2%

± 0.1%

± 0.3%

± 6%

± 6%

± 8.5%

Current Borexino Result: $49 \pm 3_{stat} \pm 4_{sys} \text{ cpd/100 tons}$

Contribution

efficiency of cuts

total systematics

fiducial mass

total scintillator mass

detector response functn

statistics

live time

Aim of new analysis: reduce uncertainties to <5%!

work in progress.

Calibration campaign to reduce
systematical uncertainties

Solar neutrino oscillations and the recent results of Borexino and SNO - HQL 2010 Frascati

Source

Measuring pep neutrinos in Borexino

Cosmogenic ¹¹C surpasses pep/CNO signals by about a factor 10!

¹¹C subtraction by threefold coincidence

- ¹¹C is produced by cosmic muons in the scintillator:
 ¹²C → ¹¹C + n
- neutron capture on H n + p \rightarrow d + γ [2.2MeV]
- rates in Borexino (3.5kmwe) muons 4300 /day neutrons >250
 ¹¹C 25
- ¹¹C half-life is 20 minutes
- → event-by-event tagging must rely on both time and spacial information!

CNO neutrinos and solar metallicity

- new analysis of solar metallicity in conflict with helioseismology
- solar neutrino production depends on metallicity Z
- based on SSM and different Z: [arXiv:0811.2424]:

Branch	Error	ΔZ
рр	0.6%	1.2%
рер	1.1%	2.8%
⁷ Be	6%	10%
⁸ B	11%	21%
CNO	16%	31-449

- **Liquid Scintillator** Water Cherenkov **Liquid Scintillator?**
- Up to now, neutrino data is not sufficient to decide ...

Conclusions

 Solar neutrinos have led to surprising insights in astrophysics and particle physics (v oscillations!).

 Measurement of solar ⁷Be and ⁸B neutrinos have solidified the basic MSW-LMA oscillation scenario.

 The MSW transition region remains mostly unexplored: A lower ⁸B detection threshold, an increase in ⁷Be accuracy and the detection of pep v's may reveal new physics!

Stay tuned for new results!

Solar neutrino oscillations and the recent results of Borexino and SNO - HOL 20

photo: 80REXINO caloration Michael Wurn

Outlook: SNO+

- refill the old SNO experiment with (doped) liquid scintillator
- Ikt target: 3x Borexino statistics
- 6000 mwe overburden: CNO/pep signal essentially free of cosmogenic ¹¹C background
- measurement of geo-v's/SN v's
- search for neutrinoless double beta decay in Nd-doped scintillator

Backup Slides

Expected Electron Recoil Spectrum

Initial Data Spectrum

Background Rejection

Solar Neutrino Spectroscopy in Borexino