

Manuel Hita-Hochgesand

Johannes Gutenberg Universität Mainz

on behalf of the **NA48/2** Collaboration:

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Heavy Quarks & Leptons 2010

Manuel Hita-Hochgesand

 K_{u3}^{\pm} Form Factor Measurement at NA48/2

Universität Mainz

Outline

- Physics Motivation
- NA48/2-Experiment
- $K_{\mu3}^{\pm}$ Form Factor Analysis
 - Event selection
 - Background sources
 - Radiative corrections
 - DATA-MC comparison
 - Preliminary result
 - Systematic checks
- $K_{\mu3}^{\pm}$ Form Factors at NA62
- Summary

 K_{l3} decays provide the **most accurate** and **theoretical cleanest** way to access $|V_{us}|$. The master formula for K_{l3} decay rates:

$$\Gamma(K_{l3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{EW} |V_{us}| |f_+(0)|^2 I_K^l(\lambda_{+0}) (1 + \delta_{SU(2)}^l + \delta_{EM}^l)^2$$

Experimental Inputs:

- $\Gamma(K_{l3(\gamma)})$ Branching ratios and Kaon lifetimes.
- $I_K^l(\lambda_{+0})$ Phase space integral depends on the form factors.

Theory Inputs:

- S_{EW} Universal short distance EW corrections (1.0232 ± 0.0003) .
- $f_+(0)$ Form factor at zero momentum transfer.
- $\delta_{SU(2)}^{l}$ Form factor correction for isospin breaking (charged mode only).
- δ_{EM}^l Long distance EM effects.

 K_{l3} decays are described by **two form factors** $f_{\pm}(t)$ and the **matrix element** can be written as:

$$M = \frac{G_F}{2} V_{us} (f_+(t)(P_K + P_\pi)^\mu \bar{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \bar{u}_l (1 + \gamma_5) u_\nu)$$

 $t = q^2$ is the square of the four-momentum transfer to the lepton neutrino system. $f_{-}(t)$ can only be measured in $K_{\mu 3}$ decays because of $m_e << m_K$.

 $f_+(t)$ is the vector form factor and $f_0(t)$ the scalar form factor which is a linear combination of: $t = f_0(t) - f_0(t) + t = t = t$

$$f_0(t) = f_+(t) + \frac{\iota}{(m_K^2 - m_\pi^2)} f_-(t)$$

By construction $f_+(0) = f_0(0)$. $f_+(0)$ cannot be measured directly, therefore the form factors are normalised to $f_+(0)$:

$$\bar{f}_{+}(t) = \frac{f_{+}(t)}{f_{+}(0)}$$
 $\bar{f}_{0}(t) = \frac{f_{0}(t)}{f_{+}(0)}$ $\bar{f}_{+}(t) = \bar{f}_{0}(t)$

Form Factor Parametrizations

Parametrizations who make use of **physical quantities** are called **class 1** parametrizations, which depend on free parameters which have a physical meaning.

Pole Parametrization:

Describes the exchange of K^* resonances with spin-parity $1^-/0^+$ and mass m_V/m_S . $f_+(t)$ can be described by $K^*(892)$, for $f_0(t)$ no obvious dominance is seen.

$$\bar{f}_{+,0}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t}$$

Dispersive Parametrization:

This parametrization is based on a dispersive approach with the free parameters Λ_+ and $\ln C$.

Accurate polynomial approximations for the dispersive integrals G(t) and H(t) are available.

$$\bar{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}}(\Lambda_{+} + H(t))\right] \quad \bar{f}_{0}(t) = \exp\left[\frac{t}{\Delta_{K\pi}}(\ln C - G(t))\right]$$

(PLB 638(2006) 480, PRD 80(2009) 034034)

Form Factor Parametrizations

Parametrizations without a **physical meaning** are called **class 2** parametrizations. They require more free parameters and are mathematical expansions in the momentum transfer.

Linear and quadratic parametrization:

The expansion in the momentum transfer $t\,$ is widely used:

$$\bar{f}_{+,0}(t) = \begin{bmatrix} 1 + \lambda_{+,0} \frac{t}{m_{\pi}^2} \end{bmatrix} \quad \text{Linear}$$
$$\bar{f}_{+,0}(t) = \begin{bmatrix} 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 \end{bmatrix} \quad \text{Quadratic}$$

• No sensitivity to determine λ_0'' with current experiment $\rightarrow \bar{f}_+$ quadratic / \bar{f}_0 linear.

Z-fit parametrization:

The parametrization function depending on t and $t_+ = (m_K + m_\pi)^2$ sums an infinite number of terms, transforming the original series, naively an expansion involving $t/t_+ \leq 0.3$, into a series with much smaller expansion parameters (*PRD74(2006) 096006*).

SM Test using form factors

The dispersive parametrization provides a link from the experimental accessible t region to the Callan-Treiman point $\Delta_{K\pi} = (m_K^2 - m_{\pi}^2)$. The value for $\overline{f_0}(\Delta_{K\pi})$ is given by the CT-theorem:

$$C = \bar{f}_0(\Delta_{K\pi}) = \frac{f_{K^+}}{f_{\pi^+}f_+(0)} + \Delta_{CT}$$

 Δ_{CT} is evaluated in NLO in ChPT (Gasser and Leutwyler (85)) $\Delta_{CT}^{\text{NLO}} = (-3.5 \pm 8.0) \times 10^{-3}$.

It is possible to calculate *C* by measuring $Br(K_{12}/\pi_{12})$ and $\Gamma(K_{e3})$:

$$C = \bar{f}_0(\Delta_{K\pi}) = B_{\exp} r + \Delta_{CT} = \frac{f_K |V_{us}|}{f_\pi |V_{ud}|} \frac{1}{f_+(0)|V_{us}|} |V_{ud}|r + \Delta_{CT}$$

Compare the value of *C* from this calculation to those obtained by the $K_{\mu3}^{\pm}$ analysis. In the Standard model r = 1 is expected $\rightarrow B_{exp} = 1.2446 \pm 0.0041$

Physics beyond the Standard model can lead to small modifications in the measured value of $B_{\rm exp}$.

Manuel Hita-Hochgesand

 K_{u3}^{\pm} Form Factor Measurement at NA48/2

NA48/2-Experiment

• NA48/2: is a fixed target experiment in the North Area of CERN the SPS. In 2004 the main purpose was the search of direct CP violation in $K^{\pm} \rightarrow 3\pi$ decays.

• The beamline offered simultaneous K^+ and K^- beams. The beams were coinciding within 1 mm along the 114 meter long decay volume.

• For the form factor measurement a dedicated three-day run with minimum bias trigger and low intensity was used.

• The beam momentum was (60 ± 1.8) GeV/c $\,$ in this special run.

NA48/2-Experiment

Main detector components:

Magnetic Spectrometer

$$\frac{\sigma_p}{p} = 1.02\% \oplus 0.044\% \frac{p}{\text{GeV}/c}$$

~ 1% resolution for charged particles with p=20 GeV/c

Hodoscope

two planes of scintillator for fast triggering. $\sigma_t \sim 150~\mathrm{ps}$

Liquid Krypton EM Calorimeter

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E/\text{GeV}}} \oplus \frac{9.0\%}{E/\text{GeV}} \oplus 0.42\% \sim 1\%$$

1.4% resolution for particles with E=20 GeV

Muon veto system

three planes of scintillators, each shielded by 80 cm iron. 99.9% efficient. $\sigma_t \sim 350~{
m ps}$

Min Bias Trigger: Coincidence of two Hodoscope hits $\times E_{LKr} > 10 \text{ GeV}$

Event selection:

1 good track.

- Muon identification (muon veto + E/P)
 P_μ > 10 GeV
- 1 good $\pi^0
 ightarrow \gamma\gamma$.

• Pion mass cut:
$$|m_{\gamma\gamma} - m_{\pi^0}^{PDG}| < 10 \,\,{\rm MeV}$$

Event reconstruction

• Event timing between clusters and muon track • Missing mass calculation with $K_{\mu3}^{\pm}$ hypothesis $MM_{K_{\mu3}}^2 = (P_K - P_\mu - P_{\pi^0})^2$ • Missing mass cut: $|MM_{K_{\mu3}}|^2 < 10 \text{ MeV}^2$

 $3.4 \times 10^6 K_{\mu 3}^{\pm}$ events selected

Background:

Decay	$\mathrm{BR}(\%)$	P $(\pi^{\pm}\pi^0 \to K_{\mu3})(\%)$
$K^{\pm} \to \pi^{\pm} \pi^0$	20.66 ± 0.08	19.8

- $K^{\pm} \to \pi^{\pm} \pi^0$ with $\pi \to \mu$ can fake $K_{\mu 3}^{\pm}$.
- Without suppression, $K^{\pm}
 ightarrow \pi^{\pm} \pi^{0}$ bkg at the level of 20%. ^a
- Cut in the invariant $\pi^{\pm}\pi^{0}$ mass and the transverse momentum of the pion:
 - \rightarrow about 24% lost of $K_{\mu3}^{\pm}$ events.
 - → Background contamination reduced to 0.6%.

• Background is well localised in the Dalitz plot.

Dalits Plot PiPi0 background

$\pi^{\pm}\pi^{0}\pi^{0}$ **Background**:

Decay	$\mathrm{BR}(\%)$	P $(\pi^{\pm}\pi^{0}\pi^{0} \to K_{\mu3})(\%)$
$K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$	1.761 ± 0.022	0.14

• $\pi \rightarrow \mu$ decay with lost photons from π^0 -decays.

- **Small contamination** but introduce slope in the Dalitz plot.
- No dedicated cut to reduce the background is applied.
- In the fit a correction is applied to take the background into account.
- Without the correction the result shifts about $\simeq 0.5~\sigma_{
 m stat}$.

Dalits Plot PiPi0Pi0 background

Radiative effects:

The K_{l3} decay rate including first order radiative corrections can be written as:

 $\Gamma_{K_{l3}} = \Gamma^0_{K_{l3}} + \Gamma^1_{K_{l3}} = \Gamma^0_{K_{l3}} (1 + 2\delta^{Kl}_{EM})$

• Simulation with C. Gatti code provided by KLOE (EPJ C45 (2006) 417)

• For the normalisation on different decay modes used parameters are: (JHEP 11 (2008) 006)

- For $K_{\mu3}^{\pm}$ small effects on the acceptance.
- percent effect on the Dalitz plot slope.

Dalits Plot Kmu3 radiative ×10³ ر 90.26 A0.24 100 년 6 6 80 0.2 60 0.18 40 0.16 20 0.14 0.12 0.22 0.26 0.1 0.24 0.12 0.18 0.2 Muon energy (GeV) **Dalits Plot correction** ر 90.26 0.005 ADD.24 50.22 0 0.2 -0.005 0.18 -0.01

0.16

0.14

0.12

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Muon energy (GeV)

0.26

-0.015

Fitting Procedure:

To extract the form factors a fit to the Dalitz Plot density is performed.

 $\bullet E_{\mu}^{*}$ and E_{π}^{*} are the energy of the muon and the pion in the CMS of the kaon.

• A, B and C are kinematical terms.

reconstructed data dalitz plot

 \bullet The fit is performed in cells of $5 imes 5~{
m MeV}^2$

• Cells who are outside or crossing the border of the physical region of the Dalitz Plot are not used in the fit.

Applied corrections:

- Background subtraction.
- Acceptance.
- Radiative corrections.

DATA-MC Comparison

• Pion energy in the Kaon CMS:

• Muon energy in the Kaon CMS:

Preliminary NA48/2 Result:

Quadratic $(\times 10^{-3})$	$ \lambda'_+$	$ \lambda_{+}'' $	λ_0	
	$30.3 \pm 2.7 \pm 1.4$	$1.0\pm1.0\pm0.7$	$15.6 \pm 1.2 \pm 0.9$	
Pole (MeV/c^2)	m_V		m_S	
	$836 \pm 7 \pm 9$		$1210 \pm 25 \pm 10$	
Dispersive $(\times 10^{-3})$	Λ_+		lnC	
	$28.5 \pm 0.6 \pm 0.7 \pm 0.5$		$188.8 \pm 7.1 \pm 3.7 \pm 5.0$	

- First uncertainty is statistical, second is systematical.
- For the dispersive result the theoretical error is added (v. Bernard et al. PRD80 (2009) 034034).
- z-fit in progress....

Preliminary Systematics:

	$\Delta\lambda'_+$	$\Delta\lambda_+''$	$\Delta\lambda_0$	Δm_V	Δm_S	Λ_+	LnC
		$\times 10^{-3}$		MeV/c^2		$\times 10^{-3}$	
K^{\pm} Energy	± 0.7	± 0.5	± 0.6	± 7	± 2	± 0.5	± 2.6
Vertex	± 1.0	± 0.4	± 0.6	± 2	± 4	± 0.1	± 1.1
Acceptance	± 0.3	± 0.1	± 0.2	± 2	± 7	± 0.1	± 1.8
$\pi \to \mu \text{ scale}$	± 0.4	± 0.2	± 0.2	±1	± 1	± 0.0	± 0.0
2^{nd} analysis	± 0.4	± 0.1	± 0.2	± 6	± 6	± 0.5	± 1.5
Total Systematic	± 1.4	± 0.7	± 0.9	±10	± 10	± 0.7	± 3.7
Statistical	± 2.7	± 1.0	± 1.3	± 7	± 26	± 0.6	± 7.1
Theory						± 0.5	± 5.0
Total Uncertainties	± 3.0	± 1.2	± 1.6	± 12	± 28	± 1.0	± 10.1

Total uncertainties mostly dominated by statistics.

Outlook: $K_{\mu3}^{\pm}$ Form Factors at NA62

In the year 2007 NA62 collected data for a dedicated measurement of $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ and test of the future $K^+ \to \pi^+ \nu \bar{\nu}$ experiment.

- 4 month of data taking with a minimum bias trigger $Q1 \times E_{Lkr} > 10$ GeV.
- Simultaneous K^+ and K^- beams with a beam momentum of $P_K = (74 \pm 1.6) \text{GeV/c}$.
- Transverse momentum kick of the magnetic spectrometer was doubled
 - Improvement in the track momentum resolution.
- Collected about 150000 K_{e2} events.
- First results on 40% of the present statistics presented at BEACH2010 and ICHEP2010.
- The expected precession for the full data sample is $\sigma(R_K)/R_K \simeq \pm 0.4\%$.

Form Factors from NA62 2007 data

- Huge statistics in $K^{\pm}_{\mu3}$ and K^{\pm}_{e3} of $\mathcal{O}(10^7)$ events.
- Special K_L run (15 h) to measure electron ID efficiency.
 - \rightarrow $K^0_{\mu3}$ and K^0_{e3} statistics of $\mathcal{O}(10^6)$ events.

NA48 analyses of K_{l3}^0 and K_{l3}^{\pm} can be repeated with different/larger data sets.

Summary and outlook

• NA48/2 provides new results on the $K_{\mu3}^{\pm}$ form factors in the quadratic, dispersive and Pole parametrization.

• For the **first time** a result is presented which studied K^+ and K^- decays.

• High precision measurement which is very competitive with other results.

• A new result on K_{e3}^{\pm} is in progress and will appear soon.

• NA62 is ready to give its contribution with high statistics in K_{l3}^0 and K_{l3}^{\pm} .