CP violation in BaBar / Belle

 part IIYosuke Yusa
Virginia Tech

Recent Hot Topics

* ϕ_{3} / r measurements ADS, Dalitz (GGSZ)
* Direct CP violation in $B /$ non- B decays

* KEKB shutdown for upgrade to superKEKB

Luminosity at B factories

Recent Hot Topics

* ϕ_{3} / r measurements ADS, Dalitz (GGSZ)
* Direct CP violation in $B /$ non- B decays

* KEKB shutdown for upgrade to superKEKB

Contents of this talk

- Review of time-dependent CP violation measurement
- Recent results of CP violation measurement

Review of time-dependent CP violation measurement

Overview of Time-dependent CP asymmetry measurement

$$
\mathcal{A}_{C \mathcal{P}}=\frac{\mathcal{P}\left(\overline{B^{0}}(\Delta t) \rightarrow f_{C P}\right)-\mathcal{P}\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}{\mathcal{P}\left(\overline{B^{0}}(\Delta t) \rightarrow f_{C P}\right)+\mathcal{P}\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}
$$

$$
=S \sin \Delta m \Delta t \quad+\quad A \cos \Delta m \Delta t
$$ mixing induced CPV direct CPV

$\Delta m: B-\bar{B}$ mass difference $\Delta t: B-\bar{B}$ decay time difference

Angles of unitary triangle can be measured in several CP-eigenstates:
ex. $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{\psi} \mathrm{K}^{0}(\mathrm{~b} \rightarrow \mathrm{ccs}$ tree)
$S=-\xi_{f} \sin 2 \phi_{1}$
$\mathrm{B}^{0} \rightarrow \pi \pi, \rho \rho(\mathrm{~b} \rightarrow$ und tree)
$S=-\xi_{f} \sqrt{1-A^{2}} \sin 2 \phi_{2}{ }^{\text {eff }}$
$\phi_{2}{ }^{\text {eff }}=\phi_{2}-\Delta \phi_{2}$
(extra-CP phase from other diagram)

- Decay time is measured from difference of vertex position
- Flavor of B^{0} is measured from information of daughter of
companion B (high momentum lepton, kaon, etc.)

$\sin 2 \phi_{1} / \beta$ measurement

$C P \operatorname{odd}\left(\xi_{f}=-1\right)$

\mathcal{B} Belle 535M BB
 Ezle (PRL 98 (2007) 031802)

BABAR 465M BE (full data set) (PRD 79 (2009) 072009)

$\sin 2 \phi_{1}=0.642 \pm 0.031 \pm 0.017$

$$
\begin{aligned}
& \mathrm{A}=-0.018 \pm 0.021 \pm 0.014 \\
& \left(B^{0} \rightarrow J / \psi K^{0} \text { total }\right)
\end{aligned}
$$

$\sin 2 \phi_{1}=0.666 \pm 0.031 \pm 0.013$
$A=-0.016 \pm 0.023 \pm 0.018$
$\left(B^{0} \rightarrow J / \psi K^{0}\right.$ total $)$
beam constraint mass:
$M_{b c}=\sqrt{\left(E_{\text {beam }} / 2\right)^{2}-\text { Prec }^{2}}=m$ Es
(signal: = Mво)

Average of $b \rightarrow$ charmonium

ϕ_{1} is measured to <5\% accuracy

Motivation of further $\sin 2 \phi_{1} / \beta$ measurements

$-\sin 2 \phi_{1} \longleftrightarrow\left|V_{\text {ub }}\right|$ from $B^{+} \rightarrow \tau^{+} \nu$
Recent global fit result by CKMfitter

$$
\mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \tau \nu\right)=\left(0.861{ }_{-0.0 .095}^{+0.109}\right) \times 10^{-4}(\text { CKMFitter, ICHEPIO) }
$$

Hints of new physics contribution?
Belle preliminary

Further $\sin 2 \phi_{1} / \beta$ measurements - Belle final result will be shown in near future

772M B̄̄, full data

	$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$	$\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}$	$\psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}$	$\chi_{\mathrm{c} 1} \mathrm{~K}_{\mathrm{S}}$
Signal yield	12727 ± 115	10087 ± 154	1981 ± 46	949 ± 33
Purity (\%)	97	63	93	89
Signal yield (535M BB)	7484 ± 87	6312 ± 123	-	-
Purity (\%) (535M BB)	97	59	-	-

Expected statistical error on $\sin 2 \phi_{1}=0.023$
$\rightarrow 30 \%$ smaller than previous result and close to systematic limit (c.f. $\sin 2 \phi_{1}=0.642 \pm 0.031$ (stat) ± 0.017 (syst), Belle 535 M BB)

ϕ_{2} / α measurement

$-\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
Belle 535M B̄̄ (PRL 9821 1801)

$S=-0.61 \pm 0.10 \pm 0.04$
$A=0.55 \pm 0.08 \pm 0.05$

BABAR 465M B̄̄ (arXiv:0807.4226)

$S=-0.68 \pm 0.10 \pm 0.03$
$A=0.25 \pm 0.08 \pm 0.02$
\rightarrow Extra CP phase is determined using isospin relations (Gronau and London, PRL65 3381) with other measured values

$$
\begin{aligned}
& A^{+0}=\frac{1}{\sqrt{2}} A^{+-}+A^{00} \\
& \bar{A}^{-0}=\frac{1}{\sqrt{2}} \bar{A}^{+-}+\bar{A}^{00}
\end{aligned}
$$

$$
\begin{array}{c|c}
\mathrm{BR}\left(\mathrm{~B}^{0} \rightarrow \pi^{+} \pi^{\circ}\right) & =5.16 \pm 0.22
\end{array} \quad-\quad . \quad .
$$

($A^{i j}$: Decay amplitude of $B \rightarrow \pi^{i} \pi^{j} / \rho^{i} \rho^{j}$)
\Rightarrow exclude $9^{\circ}<\phi_{2}<81^{\circ}$ (95.4\% C.L.) $\quad \Rightarrow$ exclude $23^{\circ}<\phi_{2}<67^{\circ}$ (90\% C.L.)

ϕ_{2} / α measurement

Both asymmetries and branching fractions will be updated with full data samples in Belle and BABAR.
$\phi 2$ will be measured with better accuracy in near future.

Recent results of CP violation measurement

$b \rightarrow c$ tree

Direct CPV~0
Asymmetry :
$A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right)$

$$
=\frac{\mathcal{B}\left(B^{-} \rightarrow J / \psi K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow J / \psi K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)}
$$

~ 0.3\% in Standard Model
$\mathrm{O}(1 \%)$ extra $\mathrm{U}(1)$ ' gauge boson
Phys. Lett. B. 598, 218 (2004)
O(10\%) extra coupling to charged Higgs Phys. Rev. D. 62, 056005 (2000)

Precise measurement using huge data samples
$N_{\text {signal }}=41315 \pm 205$ events beam constraint mass:
$\mathrm{Mbc}_{\mathrm{bc}}=\sqrt{\left(\text { Ebeam }^{2}\right)^{2}-\mathrm{Prec}^{2}}\left(\right.$ signal: $=\mathrm{Mbo}^{\text {}}$)
$b \rightarrow s$ penguin

New physics contribution?

Previous measurements	Asymmetry (\%)
Belle (2003, 32M B $\bar{B})$	$-2.6 \pm 2.2 \pm 1.7$
BABAR (2005, 124M B $\bar{B})$	$+3.0 \pm 1.4 \pm 1.0$
D0 (2008, 40k signal)	$+0.75 \pm 0.61 \pm 0.30$
PDG (2009)	$+0.9 \pm 0.8$

$\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}$Direct CPV

Asymmetry from K+/K- detection efficiency should be considered (detector acceptance, interaction rate difference between K^{+}and K^{-})
\rightarrow estimate from control samples:
Ds $\rightarrow \phi(\rightarrow \mathrm{KK}) \pi^{+}, \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi^{+}$

$$
\begin{aligned}
& \text { measured } \begin{array}{l}
\text { forward-backward } \\
\text { asymmetry of } D
\end{array} \\
& \text { meffetection } \\
& \text { efficiency }
\end{aligned} \begin{aligned}
& \text { K detection } \\
& \text { efficiency }
\end{aligned}
$$

Consider K momentum/flight direction dependence on $A \varepsilon^{K}$

$$
\begin{aligned}
& A_{C P}\left(B^{+} \rightarrow J / \psi K^{+}\right) \\
& \quad=\frac{\mathcal{B}\left(B^{-} \rightarrow J / \psi K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow J / \psi K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)} \\
& \quad=(-0.76 \pm 0.50 \pm 0.22) \%
\end{aligned}
$$

CP violation in $\mathrm{b} \rightarrow \mathrm{s}$ transition

Loop appears in first order diagrams of
Flavor Changing Neutral Current transitions
$b \rightarrow$ sqq penguin, $b \rightarrow s \gamma$
\Rightarrow Sensitive to new physics contribution
\rightarrow Extra CP phase

CP violation in $\mathrm{b} \rightarrow \mathrm{s}$ transition

Loop appears in first order diagrams of
Flavor Changing Neutral Current transitions
$b \rightarrow$ sqq penguin, $b \rightarrow s r$
\Rightarrow Sensitive to new physics contribution \rightarrow Extra CP phase

Indirect search for SUSY and Higgs

C

$\left(\sin 2 \phi_{1} / \beta\right)^{\text {eff }}$ measurement

$-\sin 2 \phi_{1} \longleftrightarrow \sin 2 \phi_{1}$ eff ($b \rightarrow$ sqq penguin dominant modes)

Slight positive shifts from $\sin 2 \phi_{1}$ are expected by contribution from $b \rightarrow u$ tree and so on.
J. Zupan, ECONFC070512:012, 2007; Hai-Yang Cheng, hep-ph/0702252
$\sin 2 \phi_{1}$ is a reference point for this study

-2	-1	0	1

$\mathrm{B}^{0} \rightarrow \mathrm{~K}+\mathrm{K}^{-} \mathrm{K}^{0}\left(\mathrm{~B}^{0} \rightarrow \mathrm{foK}^{0}, \mathrm{~B}^{0} \rightarrow \phi \mathrm{~K}^{0}\right)$

$$
\begin{aligned}
& \phi_{1} \text { eff }\left(\phi K^{0} \mathrm{~s}\right)=(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ} \\
& \phi_{1}{ }^{\text {eff }}\left(\mathrm{fo}_{\mathrm{o}} \mathrm{o} s\right)=(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{1} \text { eff }\left(\phi \mathrm{K}^{0} s\right)=(7.7 \pm 7.7 \pm 0.9)^{\circ} \\
& \phi_{1} \text { eff }\left(\mathrm{foK}^{0}\right)=(8.5 \pm 7.5 \pm 1.8)^{\circ}
\end{aligned}
$$

$\mathrm{B}^{0} \rightarrow \phi \mathrm{Ks}^{0} \gamma$

D. Atwood, M.Gronau, A.Soni,

PRL 79, 185 (1997)

- In SM, radiative photon from $\mathrm{b} \rightarrow \mathrm{s} \gamma$ transition is flavor-specific.
- $\mathrm{B}^{0} \leftrightarrow \overline{B^{0}}$ interference can occur only through a helicity flip.
- The CP asymmetry in SM is suppressed by the quark mass ratio.

$$
S \approx-2\left(m_{s} / m_{b}\right) \sin \left(2 \phi_{1}\right) \sim 0.03
$$

beam constraint mass:
$M_{b c}=\sqrt{\left(E_{b e a m} / 2\right)^{2}-\text { Prec }^{2}}\left(\right.$ signal: $\left.=M_{\text {Bo }}\right)$
energy difference:
$\Delta \mathrm{E}=\mathrm{E}_{\text {rec }} \mathrm{CM}-\mathrm{E}_{\text {beam }} / 2$ (signal: $=0$)

Summary

- $\sin 2 \phi_{1}$ study using full data will be finalized soon
- Further constraints on ϕ_{2} are expected from asymmetries/branching fraction measurements
- New results using large data sets
- $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}$direct CP violation
- $\mathrm{B} \rightarrow \mathrm{KKK}$ s time-dependent Dalitz analysis
- $\mathrm{B}^{0} \rightarrow \phi \mathrm{~K}^{0}{ }_{s} r$ time-dependent CP violation and other modes in backup slides

backup

Fully inclusive $\mathrm{B} \rightarrow \mathrm{Xs} \gamma$

$347 \mathrm{fb}^{-1} \mathrm{Y}(4 \mathrm{~S})$ Data and $36 \mathrm{fb}^{-1}$ Off resonance Data * Signal signature:

One isolated High Energy photon ($\gamma_{\text {HE }}$), do not reconstruct the hadronic system. Veto γ_{HE} from π^{0} / η.

* Lepton tag and event topology criteria used to suppress continuum.

$\mathrm{N}\left(\mathrm{l}^{+}\right)=2623 \pm 158$
$\mathrm{~N}\left(\mathrm{l}^{-}\right)=2397 \pm 151$

Babar preliminary $\mathrm{A}_{\mathrm{CP}}=0.056 \pm 0.060 \pm 0.018$

$-0.110 \pm 0.115 \pm 0.017$
$0.10 \pm 0.18 \pm 0.05$
$0.225 \pm 0.181 \pm 0.027$
$0.056 \pm 0.060 \pm 0.018$

Consistent with SM expectation:
$\operatorname{Acp}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}+\mathrm{d}} r\right) \sim 1$ O-6 $^{-6}$ (T.Hurth, et. al., Nucl. Phys. B704 (2005))
Statistical error dominant

Inclusive $\mathrm{B} \rightarrow \mathrm{X}$ s n

Unexpectedly large branching fraction observed in $B \rightarrow X s \eta$ CLEO2003 (9.7M BB) ($4.6 \pm 1.1 \pm 0.4 \pm 0.5) \times 10^{-4}$ BABAR2004 (88.4M BB) $(3.9 \pm 0.8 \pm 0.5 \pm 0.8) \times 10^{-4}$ (2.0 GeV/c < $P_{n}<2.7 \mathrm{GeV} / \mathrm{c}$)
\rightarrow No explanation so far, comparison to Xsn gives some hints

Xs: pseudo-inclusive reconstruction with $\left(K_{0}{ }^{s}\right.$ or $\left.K^{ \pm}\right)+n \pi \quad(n=1-4)$

Inclusive $\mathrm{B} \rightarrow \mathrm{Xs} n$

$\operatorname{Br}\left(\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}} \boldsymbol{\eta} ; \mathbf{M}_{\mathrm{X}_{\mathrm{s}}}<2.6 \mathrm{GeV} / \mathbf{c}^{2}\right)=\left(26.1 \pm 3.0(\right.$ stat $) \pm{ }^{+1.9-2.1}($ syst $){ }^{+4.0-7.1}($ model $\left.)\right) \times 10^{-5}$
$\operatorname{Br}\left(B \rightarrow X_{s} \boldsymbol{\eta} ; 1.8 \mathrm{GeV} / \mathbf{c}^{2}<\mathrm{M}_{\mathrm{X}_{\mathrm{s}}}<2.6 \mathrm{GeV} / \mathbf{c}^{2}\right)=(\mathbf{1 6 . 9} \pm 2.9($ stat $) \pm+1.5-1.8($ syst $)+3.3 .5 .9($ model $)) \times 10^{-5}$

$$
\text { ACP }(\mathrm{B} \rightarrow \mathrm{Xs} \boldsymbol{\eta} ; \text { MXs }<2.6 \mathrm{GeV} / \mathrm{c} 2)=-0.13 \pm 0.04(\text { stat })^{+0.02}{ }_{-0.03}(\text { syst })
$$

(Belle preliminary arXiv:0910.4751v2 [hep-ex])
Lack of strong suppression / Mxs spectrum shape
\rightarrow disfavors η^{\prime} specific mechanism
(I. E. Halperin and A. Zhitnitsky, Phys. Rev. Lett. 80;
D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997) 438 (1998))
\Rightarrow We still have puzzle
10th International Conference on Heavy Quarks and Leptons, Frascati Oct. 13, 2010

CP violation in $\tau \rightarrow \mathrm{Ks}^{0} \pi \nu$

CP violating phase in New physics (ex. Multi-Higgs model) Higgs coupling constant: $-4.1<\operatorname{lm}(n \mathrm{~S})<1.6$ (CLEO)

In hadronic rest frame
$A_{\psi \beta}^{\mathrm{CP}} \simeq \frac{1}{N^{-}} \sum_{i \in \tau^{-}} \cos \psi_{i} \cos \beta_{i}-\frac{1}{N^{+}} \sum_{j \in \tau^{+}} \cos \psi_{j} \cos \beta_{j}$

$$
\equiv\langle\cos \psi \cos \beta\rangle_{-}-\langle\cos \psi \cos \beta\rangle_{+}
$$

Zoom in:
before background subtraction

Results after background subtraction

	$\left(10^{-3}\right)$		
$M_{K_{s}} \pi$ in (GeV)	$A_{\psi \beta}^{\mathrm{CP}}$	$\sigma_{\text {stat }}$	$\sigma_{\text {syst }}$
$0.625-0.890$	7.97	3.35	2.85
$0.890-1.110$	1.74	2.19	1.40
$1.110-1.420$	4.92	8.02	1.62
$1.420-1.775$	-3.15	22.09	5.47

$||m(n s)|<0.05-0.2$ @90\%CL Belle preliminary

Experimental Apparatus KEKB/Belle at KEK,Japan

$\cos 2 \phi_{1} / \beta$ measurement with Dalitz

$B^{0} \rightarrow D\left[K^{0}{ }_{S} \pi^{+} \pi{ }^{-}\right] \boldsymbol{h}^{0}\left(h^{0}=\pi^{0}, \eta, \omega, \eta^{\prime}\right)$

Time-dependent Dalitz plot density:

(A.Bonder, T.Gershon and P. Krokovny, PLB 624 1-10)

$$
P\left(m_{+}^{2}, m_{-}^{2}, \Delta t, q_{B}\right)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{8 \tau_{B^{0}}} \frac{F\left(m_{+}^{2}, m_{-}^{2}\right)}{2 N}\left(1+q_{B} \times\left\{\mathcal{A}\left(m_{-}^{2}, m_{+}^{2}\right) \cos (\Delta m \Delta t)+\mathcal{S}\left(m_{-}^{2}, m_{+}^{2}\right) \sin (\Delta m \Delta t)\right\}\right)
$$

$$
\mathcal{S}=\frac{-2 \xi_{h^{0}}(-1)^{l} \operatorname{Im}\left\{f\left(m_{-}^{2}, m_{+}^{2}\right) f^{*}\left(m_{+}^{2}, m_{-}^{2}\right) e^{2 i \phi_{1}}\right\}}{F\left(m_{+}^{2}, m_{-}^{2}\right)}
$$

$\operatorname{Im}\left(f\left(m_{-}^{2}, m_{+}^{2}\right) f^{*}\left(m_{+}^{2}, m_{-}^{2}\right)\right) \cos 2 \phi_{1}+\operatorname{Re}\left(f\left(m_{-}^{2}, m_{+}^{2}\right) f^{*}\left(m_{+}^{2}, m_{-}^{2}\right)\right) \sin 2 \phi_{1}$
$f:$ decay amplitude of $\boldsymbol{D}^{\boldsymbol{0}} \rightarrow \boldsymbol{K}^{0}{ }_{S} \boldsymbol{\pi}^{+} \boldsymbol{\pi}$ -
$m_{ \pm}$: two-body invariant mass of $\boldsymbol{K}^{\boldsymbol{0}} \boldsymbol{\pi}^{ \pm}$ $\xi_{h^{a}} \mathrm{CP}$ eigenvalue of h^{0}

$$
\begin{aligned}
& F=\left|f\left(m_{-}^{2}, m_{+}^{2}\right)\right|^{2}+\left|f\left(m_{+}^{2}, m_{-}^{2}\right)\right|^{2} \\
& N=\int\left|f\left(m_{-}^{2}, m_{+}^{2}\right)\right|^{2} d m_{+}^{2} d m_{-}^{2},
\end{aligned}
$$

$$
\mathrm{D}^{(*)} \mathbf{h}^{0} \cos (2 \beta) \equiv \cos \left(2 \phi_{1}\right)
$$

HFAG
PRELIMINARY

$\cos 2 \phi_{1}>0$ at 86\% C.L.
$\cos 2 \phi_{1}>0$ at 98.3% C.L.

$\sin 2 \phi$ i/ β systematic error

In future experiment, error of $\sin 2 \phi_{1}$ measurement will be systematic dominant

Belle 535M BB	$\begin{gathered} \sigma \\ \left(\sin 2 \phi_{1}\right) \end{gathered}$	Colored contents are
Vertexing	0.012	
Possible fit bias	0.007	independent of increase
$\Delta \mathrm{t}$ Resolution function	0.006	s
BG fractions ($\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}$)	0.005	s
Wrong tag probability	0.004	\rightarrow Technical improvement
BG fractions ($\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$)	0.003	s needed
Fixed Physics parameters: $\Delta \mathrm{m}_{\mathrm{d}}, \tau$	B0 $\quad 0.001$	is needed.
BG $\Delta \mathrm{t}$	0.001	ex.
Tag-Side interference	0.001	
Total	0.017	- select good quality tracks,
Vertexing detail	$\sigma\left(\mathbf{\operatorname { s i n }} 2 \phi_{1}\right)$	reconstruct vertex without $\mathrm{e}^{+} \mathrm{e}^{-}$
IP tube constraint vertex fit	0.0072	interaction point information
Poor-quality vertex rejection	0.0064	interaction point information
Imperfect SVD alignment	0.0056	- Improve detector mis-alignment
Δz bias	0.0050	-
Track error estimation	0.0033	
Track rejection in $B_{t a g}$ decay vertexing	0.0026	
Δt fit range	0.0002	
Total	0.012	arks and Leptons, Frascati Oct. 13, 2010

ϕ_{2} / α measurements

$\mathcal{A}_{C \mathcal{P}}=\frac{\mathcal{P}\left(\overline{B^{0}}(\Delta t) \rightarrow f_{C P}\right)-\mathcal{P}\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}{\mathcal{P}\left(\overline{B^{0}}(\Delta t) \rightarrow f_{C P}\right)+\mathcal{P}\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}$
$=S \sin \Delta m \Delta t \quad+\quad A \cos \Delta m \Delta t$ mixing induced CPV direct CPV
where $S=-\xi_{f} \sqrt{1-\mathrm{A}^{2}} \sin 2 \phi_{2}{ }^{\text {eff }}$

$$
\xi_{f}: C P \text { eigenvalue }
$$

$\Delta m: B-\bar{B}$ mass difference
$\Delta t: B-\bar{B}$ decay time difference
$\phi_{2}{ }^{\text {eff }}=\phi_{2}-\boldsymbol{\Delta} \phi_{2}\left(\right.$ "effective" $\left.\phi_{2}\right)$
\bar{b}

d d
penguin contamination

- Isospin relations between $B \rightarrow \pi^{i} \pi^{j} / \rho^{i} \rho^{j}$ decay amplitudes
(Gronau and London, PRL65 3381)

$$
\begin{array}{ll}
A^{+0}=\frac{1}{\sqrt{2}} A^{+-}+A^{00} & \left(A^{i j}: \text { Decay amplitude of } B \rightarrow \pi^{i} \pi^{j} / \rho^{i} \rho^{j}\right) \\
\bar{A}^{-0}=\frac{1}{\sqrt{2}} \bar{A}^{+-}+\bar{A}^{00} & \Rightarrow \Delta \phi_{2} \text { is determined with four-fold ambiguity. }
\end{array}
$$

- Dalitz analysis for $\pi \pi \pi^{0}$ 3-body system
(A. Snyder and H. Quinn, PRD 482139 (1993))

Interference between three $B \rightarrow \rho \pi$ states
Δt fit with coefficients of Dalitz plot functions
\Rightarrow constrain ϕ_{2} without ambiguity.

Interpretation: ϕ_{2} constraint using isospin

We use the statistical treatment of
J. Charles et al., Eur. Phys. J. C 41, 1 (2005)

ϕ 2/ α measurement $B \rightarrow \rho \rho$

$$
\boldsymbol{P} \rightarrow \boldsymbol{V} \boldsymbol{V} \text { decay } \Rightarrow\left\{\begin{array}{l}
\text { longitudinal }(C P \text {-even }) \\
\text { transverse }(C P \text {-even and } C P \text {-odd })
\end{array}\right.
$$

From angular analysis, longitudinally polarized dominant for this decay. (94.1\% from Belle, 99.2\% from BABAR)

Belle 535M B̄ (PRD76 011104)
S $=\mathbf{0 . 1 9} \pm 0.30 \pm 0.07$
$A=0.16 \pm 0.21 \pm 0.07$

BABAR 387M B̄̄ (PRD76 052007) (small penguin contamination)

$$
\begin{aligned}
& S=-0.17 \pm 0.20^{+0.05} \\
& A=0.01 \pm 0.15 \pm 0.06
\end{aligned}
$$

$\rightarrow \phi_{2}$ constraint by isospin relations with other measured values

$$
\begin{aligned}
& B R\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)=24.2^{+3.1}-3.2 \\
& \mathrm{BR}\left(\mathrm{~B}^{+} \rightarrow \rho^{+} \rho^{0}\right)=24.0^{+1.9}{ }_{-2.0} \quad \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{~B}^{+} \rightarrow \rho^{+} \rho^{0}\right)=-0.051 \pm 0.054 \\
& \mathrm{BR}\left(\mathrm{~B}^{0} \rightarrow \rho^{0} \rho^{0}\right)=0.73^{+0.27}-0.28 \\
& \text { (units: } 10^{-6} \text {) } \\
& \Rightarrow 59^{\circ}<\phi_{2}<117^{\circ}(90 \% \text { C.L. }) \quad \Rightarrow \phi_{2}=[73.1,117]^{\circ}(68 \% \text { C.L. })
\end{aligned}
$$

$\phi_{2 /} \alpha$ measurement $B \rightarrow \pi \pi \pi^{0}$

Coefficients of Dalitz plot functions are interrupted to CPV parameters of quasi-2-body decays, $B \rightarrow \rho^{+} \pi-$ and $B \rightarrow \rho^{0} \pi^{0}$
$\mathcal{C}^{+}=\frac{U_{+}^{-}}{U_{+}^{+}}, \quad \mathcal{C}^{-}=\frac{U_{-}^{-}}{U_{-}^{+}}, \quad \mathcal{S}^{+}=\frac{2 I_{+}}{U_{+}^{+}}, \quad \mathcal{S}^{-}=\frac{2 I_{-}}{U_{-}^{+}}, \quad \mathcal{A}_{\rho \pi}^{C P}=\frac{U_{+}^{+}-U_{-}^{+}}{U_{+}^{+}+U_{-}^{+}}$

$$
\mathcal{A}_{\rho^{0} \pi^{0}}=-\frac{U_{0}^{-}}{U_{0}^{+}}, \quad \text { and } \quad \mathcal{S}_{\rho^{0} \pi^{0}}=\frac{2 I_{0}}{U_{0}^{+}}
$$

$\mathcal{C} \equiv \frac{\mathcal{C}^{+}+\mathcal{C}^{-}}{2}, \quad \Delta \mathcal{C} \equiv \frac{\mathcal{C}^{+}-\mathcal{C}^{-}}{2}, \quad \mathcal{S} \equiv \frac{\mathcal{S}^{+}+\mathcal{S}^{-}}{2}, \quad \Delta \mathcal{S} \equiv \frac{\mathcal{S}^{+}-\mathcal{S}^{-}}{2}$

BABAR 375M B \bar{B} (PRD76 012004)

$\mathcal{A}_{\rho \pi}^{C P}$	$=-0.12 \pm 0.05 \pm 0.04$
\mathcal{C}	$=-0.13 \pm 0.09 \pm 0.05$
$\Delta \mathcal{C}$	$=+0.36 \pm 0.10 \pm 0.05$
\mathcal{S}	$=+0.06 \pm 0.13 \pm 0.05$
$\Delta \mathcal{S}$	$=-0.08 \pm 0.13 \pm 0.05$
$\mathcal{A}_{\rho^{0} \pi^{0}}$	$=-0.49 \pm 0.36 \pm 0.28$
$\mathcal{S}_{\rho^{0} \pi^{0}}$	$=+0.17 \pm 0.57 \pm 0.35$

$68^{\circ}<\phi_{2}<95^{\circ}$ (68.3\% C.L.)
$B \rightarrow \pi \pi^{1}{ }^{0}$ only

$\mathcal{A}_{\rho \pi}=-0.14 \pm 0.05 \pm 0.02$

$$
C=0.15 \pm 0.09 \pm 0.05
$$

$$
S=-0.03 \pm 0.11 \pm 0.04
$$

$$
\Delta C=0.39 \pm 0.09 \pm 0.09
$$

$$
\Delta S=-0.01 \pm 0.14 \pm 0.06
$$

$$
C_{00}=\frac{\overline{U_{0}^{-}}}{U_{0}^{+}}=\quad-0.10 \pm 0.40 \pm 0.53
$$

$$
S_{00}=\frac{2 I_{0}}{U_{0}^{+}}=\quad 0.04 \pm 0.44 \pm 0.18
$$

$$
\phi_{2}=\left(87_{-13}^{+45}\right)^{\circ}(68.3 \% \text { C.L. })
$$

α (deg)

Dalitz analysis for $\boldsymbol{B}^{\boldsymbol{0}} \rightarrow \boldsymbol{\rho} \boldsymbol{\pi}\left(\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}\right)$ 3-body decay.

$$
\begin{array}{rlrl}
\frac{d \Gamma}{d \Delta t d s_{+} d s_{-}} \propto e^{-\Gamma|\Delta t|}[& {\left[\left.A_{3 \pi}\left(s_{+}, s_{-}\right)\right|^{2}+\left|\bar{A}_{3 \pi}\left(s_{+}, s_{-}\right)\right|^{2}\right.} & & \text { Dalitz plot variables } \\
& -q_{\mathrm{tag}} \cdot\left(\left|A_{3 \pi}\left(s_{+}, s_{-}\right)\right|^{2}-\left|\bar{A}_{3 \pi}\left(s_{+}, s_{-}\right)\right|^{2}\right) \cos \left(\Delta m_{d} \Delta t\right) & s_{+} \equiv\left(p_{+}+p_{0}\right)^{2} \\
& \left.+q_{\mathrm{tag}} \cdot 2 \operatorname{Im}\left(\frac{q}{p} \bar{A}_{3 \pi}\left(s_{+}, s_{-}\right) A_{3 \pi}\left(s_{+}, s_{-}\right)^{*}\right) \sin \left(\Delta m_{d} \Delta t\right)\right] & s_{-} \equiv\left(p_{-}+p_{0}\right)^{2} \\
A_{3 \pi}\left(s_{+}, s_{-}\right) & =f_{+}\left(s_{+}, s_{-}\right) A^{+}+f_{-}\left(s_{+}, s_{-}\right) A^{-}+f_{0}\left(s_{+}, s_{-}\right) A^{0}, & s_{0} \equiv\left(p_{+}+p_{-}\right)^{2} \\
\frac{q}{p} \bar{A}_{3 \pi}\left(s_{+}, s_{-}\right) & =\bar{f}_{+}\left(s_{+}, s_{-}\right) \bar{A}^{+}+\bar{f}_{-}\left(s_{+}, s_{-}\right) \bar{A}^{-}+\bar{f}_{0}\left(s_{+}, s_{-}\right) \bar{A}^{0} &
\end{array}
$$

Decay amplitudes

$$
\begin{aligned}
& A^{+}=T^{-+} V_{u b} V^{*} u d+P^{-+} V_{t b} V^{*}{ }_{t d} \quad T \text { : tree transition } \\
& A^{-}=T^{+-} V_{u b} V^{*}{ }_{u d}+P^{+-} V_{t b} V_{t d}^{*} P \text { : penguin transition } \\
& A^{0}=C^{0 d} V_{u b} V^{*}{ }_{u d}+P^{00} V_{t b} V_{t d}^{*} C \text { : color-suppressed tree transition } \\
& \phi_{2} \\
& \left|A_{3 \pi}\left(s_{+}, s_{-}\right)\right|^{2} \pm\left|\bar{A}_{3 \pi}\left(s_{+}, s_{-}\right)\right|^{2}=\sum_{\kappa \in\{+,-, 0\}}\left|f_{\kappa}\right|^{2}\left(\left|A^{\kappa}\right|^{2} \pm\left|\bar{A}^{\kappa}\right|^{2}\right) \\
& +2 \sum_{\kappa<\sigma \in\{+,-, 0\}}\left(\operatorname{Re}\left[f_{\kappa} f_{\sigma}^{f_{\sigma}^{*}}\right] \operatorname{Re}\left[A^{\kappa} A^{\sigma *} \pm \bar{A}^{\kappa} \overline{A^{\sigma *}}\right]-\operatorname{Im}\left[f_{\kappa} f_{\sigma}^{*}\right] \operatorname{Im}\left[A^{\kappa} A^{\sigma^{*}} \pm \bar{A}^{\kappa} \bar{A}^{\sigma^{*}}\right]\right) \\
& \operatorname{Im}\left(\frac{q}{p} \bar{A}_{3 \pi}\left(s_{+}, s_{-}\right) A_{3 \pi}\left(s_{+}, s_{-}\right)^{*}\right)=\sum_{\kappa \in\{+,-, 0\}}{\left|f_{\kappa}\right|}^{2} \operatorname{Im}\left[A^{\kappa} A^{\kappa *}\right]
\end{aligned}
$$

$f_{\kappa, \sigma}: 9$ Dalitz plot functions
$\rightarrow 27$ coefficients measurable 3 types of distributions in Δt direction (lifetime, sine, cosine)

(Lol for Belle II at superKEKB)

Super

