# CP violation

# (charm sector and γ measurements)

# Denis Derkach

# Laboratoire de l'Accélérateur Linéaire – ORSAY CNRS/IN2P3





Heavy Quarks and Leptons Frascati, 13<sup>th</sup> October, 2010



# Motivation and outline



# D<sup>0</sup> mixing

| Flavor eigenstate                                                                                                                                                                                                                     | Mass eigenstate                                     | $c \xrightarrow{d,s,b} u$         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|--|--|
| D <sup>0</sup> (cu)>)                                                                                                                                                                                                                 | D <sup>0</sup> (M <sub>1</sub> , Γ <sub>1</sub> )>) | SR: $D^0$ $W^+$ $D^0$             |  |  |
| D₀(cu)>)                                                                                                                                                                                                                              | D <sup>0</sup> (M <sub>2</sub> , Γ <sub>2</sub> )>) | u d,s,b c                         |  |  |
| $ D_{1} \ge p D^{0} \ge +q \overline{D^{0}} > LR: \overline{D^{0}} \qquad \qquad LR: \overline{D^{0}} \qquad $ |                                                     |                                   |  |  |
| For the studies several mixing observables are used:                                                                                                                                                                                  |                                                     |                                   |  |  |
| $M_1 - M_2$ $\Gamma_1 - \Gamma_2$                                                                                                                                                                                                     |                                                     |                                   |  |  |
| $x ={I}$                                                                                                                                                                                                                              | $y = \frac{1}{2\Gamma}$                             | First observed by BaBar and Belle |  |  |
| In the Standard model<br>Mixing parameters ~ 10 <sup>-2</sup><br>CP violation ~ 10 <sup>-3</sup>                                                                                                                                      |                                                     | PRL 98 211802 (2007)              |  |  |
|                                                                                                                                                                                                                                       |                                                     | PRL 98 211803 (2007)              |  |  |
|                                                                                                                                                                                                                                       |                                                     | Confirmed by CDF                  |  |  |
|                                                                                                                                                                                                                                       |                                                     | PRL 100 121802 (2008)             |  |  |
|                                                                                                                                                                                                                                       |                                                     |                                   |  |  |

#### PRL 105 081803 (2010)



CP self-conjugate final state  $D^0 \rightarrow K_s \pi^+ \pi^-$ 

 $D^0 \rightarrow K_s K^+ K^-$ 

609M cc pairs. (468.5 fb<sup>-1</sup>)

Time-dependent Dalitz analysis



RS K\* D m²(K<sub>S</sub><sup>0</sup>π<sup>-</sup>) [GeV/c<sup>2</sup>] Data 2.5 10<sup>3</sup> 10<sup>2</sup> WS K\* 10 0.5 Logarithmic 0<sup>L</sup> 0.5 1.5 2 2.5 3 1 m²(K<sup>0</sup><sub>s</sub>π⁺) [GeV/c<sup>2</sup>]

The most accurate measurement by now

No CPV is observed. If *CP* conservation assumed:

$$x = (1.6 \pm 2.3_{\text{stat}} \pm 1.2_{\text{syst}} \pm 0.8_{\text{mod}}) \cdot 10^{-3},$$
  
$$y = (5.7 \pm 2.0_{\text{stat}} \pm 1.3_{\text{syst}} \pm 0.7_{\text{mod}}) \cdot 10^{-3}$$



4

Direct CP violation in D decays



$$A_{CP} = \frac{\Gamma_D - \Gamma_{\overline{D}}}{\Gamma_D + \Gamma_{\overline{D}}} \qquad \qquad \Gamma = \text{yields}$$

Possible bias from detector asymmetries can be estimated if use several decays at a time (see PRL 104,181602 (2010) for details):

|                      |               | Decay Mode              | $A_{CP}$ (%) (Belle)      | $A_{CP}$ (%)(other)     | $A_{CP}~(\%)~({\rm SM~from}~K^0_S)$ |
|----------------------|---------------|-------------------------|---------------------------|-------------------------|-------------------------------------|
| 673 fb <sup>-1</sup> | RL 104,181602 | $D^+ \to K^0_S \pi^+$   | $-0.71 \pm 0.19 \pm 0.20$ | $-1.3 \pm 0.7 \pm 0.3$  | -0.332                              |
|                      |               | $D^+ \to K^0_S K^+$     | $-0.16 \pm 0.58 \pm 0.25$ | $-0.2\pm1.5\pm0.9$      | -0.332                              |
|                      |               | $D_s^+ \to K_S^0 \pi^+$ | $+5.45 \pm 2.50 \pm 0.33$ | $+16.3 \pm 7.3 \pm 0.3$ | +0.332                              |
|                      | <u> </u>      | $D_s^+ \to K_S^0 K^+$   | $+0.12\pm 0.36\pm 0.22$   | $+4.7 \pm 1.8 \pm 0.9$  | -0.332                              |
| 791 fb <sup>-1</sup> | reliminary    | $D^0 \to K^0_S \pi^0$   | $-0.28 \pm 0.19 \pm 0.10$ | $+0.1\pm1.3$            | -0.332                              |
|                      |               | $D^0 \to K^0_S \eta$    | $+0.54 \pm 0.51 \pm 0.13$ | N.A.                    | -0.332                              |
|                      | ш.            | $D^0 \to K^0_S \eta'$   | $+0.90\pm 0.67\pm 0.15$   | N.A.                    | -0.332                              |

Another solution: normalize CP asymmetry to CF channels

PRL 95,231801 (2005)

#### HFAG mixing and CPV summary



Evidence for mixing is  $>10\sigma$ No evidence for *CPV* 

# $\gamma$ measurements





7

# $\gamma/\phi_3$ measurements from B $\rightarrow$ D<sup>(\*)</sup>K<sup>(\*)</sup>



Advantages: •Only tree decays. •Largely unaffected by the New Physics scenarios •Clear theoretical interpretation

Disadvantages: •Rare decays and low r<sub>B</sub>

Related variables (depend on the *B* meson decay channel):  $r_{B} = \frac{|A_{b\to u}|}{|A_{b\to c}|} < \frac{r_{B}}{r_{B}} \sim 0.1$  For charged *B* mesons  $r_{B} \sim 0.3$  For neutral *B* mesons  $\delta_{B}$  strong phase (*CP* conserving)

Experimentally not easy to measure. Three ways to extract the information:

- •GLW
- ADS
- Dalitz

# $\gamma/\phi_3$ measurements from B $\rightarrow$ D<sup>(\*)</sup>K<sup>(\*)</sup>



Advantages: •Only tree decays. •Largely unaffected by the New Physics scenarios •Clear theoretical interpretation

Disadvantages: •Rare decays and low r<sub>B</sub>

Related variables (depending on the *B* meson decay channel):  $r_{B} = \frac{|A_{b \to u}|}{|A_{b \to c}|} \checkmark \frac{r_{B} \sim 0.1 \text{ For charged } B \text{ mesons}}{r_{B} \sim 0.3 \text{ For neutral } B \text{ mesons}}$   $\delta_{B} \text{ strong phase (CP \text{ conserving})}$ 

Experimentally not easy to measure. Three ways to extract the information:

- •GLW
- •ADS
- Dalitz

## Results from $B \rightarrow D^0 K^+$



\* = in this talk

#### Results from $B \rightarrow D^{*0}K^+$



#### Results from $B \rightarrow D^0 K^{*+}$





#### $\gamma/\phi_3$ measurements with GGSZ from BaBar

#### PRL 105, 121801 (2010)







# $\gamma/\phi_3$ from Belle/BaBar



# $\gamma/\phi_3$ measurements with ADS



## $\gamma/\phi_3$ measurements with ADS from BELLE



 $\gamma/\phi_3$  measurements with ADS from BELLE



| ADS B→DI                                 | h summary                                   |                                                              |                                     |
|------------------------------------------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------|
| à <del>.</del>                           | 772 MBB                                     | 🔗 657 MBB                                                    | 🐓 468 MBB                           |
| $\mathcal{R}_{DK}$ [×10 <sup>-2</sup> ]  | $1.62 \pm 0.42  {}^{+0.16}_{-0.19}  {}^{*}$ | $0.78 \ {}^{+0.62}_{-0.57} \ {}^{+0.20}_{-0.28}$             | $1.1\pm0.6\pm0.2$                   |
| $\mathcal{R}_{D\pi}$ [ $	imes 10^{-3}$ ] | $3.28 \pm 0.37 \ ^{+0.22}_{-0.23}$ *        | $3.40 \stackrel{+0.55}{_{-0.53}} \stackrel{+0.15}{_{-0.22}}$ | $3.3\pm0.6\pm0.4$                   |
| $\mathcal{A}_{DK}$                       | $-0.39 \pm 0.26 \ ^{+0.06}_{-0.04}$         | $-0.1 \ {}^{+0.8}_{-1.0} \pm 0.4$                            | $-0.86 \pm 0.47 \ ^{+0.12}_{-0.16}$ |
| $\mathcal{A}_{D\pi}$                     | $-0.04\pm0.11\ ^{+0.01}_{-0.02}$            | $-0.02 \ {}^{+0.15}_{-0.16} \pm 0.04$                        | $0.03 \pm 0.17 \pm 0.04$            |

All the values are very consistent with yet leading statistical error

- \* Most precise measurements to date with a significance 8.4 $\sigma$  (including syst).
- \* First evidence is obtained with a significance  $3.8\sigma$  (including syst).



@CKM workshop

$$\begin{split} \mathsf{R}_{\mathsf{ADS}} \left(\mathsf{DK}\right) &= (2.25 \pm 0.84(\mathsf{stat}) \pm 0.79(\mathsf{syst})) \cdot 10^{-2} \\ \mathsf{R}_{\mathsf{ADS}} \left(\mathsf{D}\pi\right) &= (4.1 \pm 0.8(\mathsf{stat}) \pm 0.4(\mathsf{syst})) \cdot 10^{-3} \\ \mathsf{A}_{\mathsf{ADS}} \left(\mathsf{DK}\right) &= -0.63 \pm 0.40(\mathsf{stat}) \pm 0.23(\mathsf{syst}) \\ \mathsf{A}_{\mathsf{ADS}} \left(\mathsf{D}\pi\right) &= 0.22 \pm 0.18(\mathsf{stat}) \pm 0.06(\mathsf{syst}) \end{split}$$

PRELIMINARY

# $\gamma/\phi_3$ measurements with GLW



GLW, arXiv:1007.0504, acc to PRD





Large value of  $r_B$  is favored (but large uncertainty: less than  $2\sigma$  from 0)

 $\gamma/\phi_3$  measurements combination



25

# Conclusions

No significant CP violation in charm sector is observed

The D<sup>0</sup> mixing is confirmed with more than  $10\sigma$  evidence

 $\gamma/\phi_3$  measurements

Several analyses with >3  $\sigma$  CPV evidence in a single measurement

The combination can be performed separately. Big contributors are DK decay modes using Dalitz method.

The combination of all the method gives  $\gamma = (74 \pm 11)^{\circ}$  (Bayesian approach)

$$\nu = (73^{+21}_{-25})^{\circ}$$
 (Frequentist approach)

Well compatible with the prediction from SM

 $\gamma = (69.6 \pm 3.0)^{\circ}$  (Bayesian approach)  $\gamma = (67.2 {}^{+3.7}_{-3.7})^{\circ}$  (Frequentist approach)

Need to reduce the error in order to see possible deviations:





26

Backup

| Source               | $\mathcal{R}_{DK}$ | $\mathcal{R}_{D\pi}$ | $\mathcal{A}_{DK}$ | $\mathcal{A}_{D\pi}$   |
|----------------------|--------------------|----------------------|--------------------|------------------------|
| Fit                  | +9.7%<br>-6.3%     | $^{+6.5}_{-5.3}\%$   | +0.05<br>-0.04     | +0.009<br>-0.018       |
| $(\Delta E$ -PDF     | $^{+4.4}_{-3.6}\%$ | $^{+2.4}_{-2.3}\%$   | $\pm 0.02$         | $\pm 0.003$ )          |
| $(\mathcal{NB}-PDF)$ | $^{+4.2}_{-1.6}\%$ | $^{+4.0}_{-2.8}\%$   | $^{+0.02}_{-0.01}$ | $^{+0.001}_{-0.010}$ ) |
| (Yield and asymmetry | $\pm 1.1\%$        | $\pm 0.1\%$          | $\pm 0.01$         | $\pm 0.005$ )          |
| Peaking backgrounds  | $^{+0.7}_{-9.9}\%$ | $^{+0.0}_{-4.1}\%$   | $+0.03 \\ -0.00$   | $+0.002 \\ -0.000$     |
| Efficiency           | $\pm 1.7\%$        | $\pm 1.5\%$          |                    |                        |
| Detector asymmetry   | • • •              | • • •                | $\pm 0.02$         | $\pm 0.005$            |

# $\gamma/\phi_3$ measurements from B<sup>0</sup> $\rightarrow$ DK<sup>\*0</sup>



29

 $D^0 \rightarrow K_s h^+h^-$  results from BaBar

Signal Random Events / 0.08 ps Misrecon B D → K<sub>0</sub>K<sub>0</sub> a)  $\rho/\omega$  $K_{S}\pi^{+}\pi^{-}$ BaBar nts / 0.035 GeV2/c nts / 0.025 GeV<sup>2</sup>/c Preliminary K\*(892)-Signal : 541K purity 98.5% 10 1.5 2 s<sub>0</sub> (GeV<sup>2</sup>/c<sup>4</sup>) κsπ-Ksπ<sup>+</sup> s, (GeV<sup>2</sup>/c<sup>4</sup>) s. (GeV2/c4) -2 *t* (ps)  $\pi^+$ π-S-wave  $\pi^+\pi^-$ S-wave  $K^0\pi^-$ P- and D-waves  $\mathcal{A}_f$  : K-matrix model LASS model **Breit-Wigner model** 10<sup>4</sup> b) Events / 0.08 ps **\$(1020)**  $K_{S}K^{+}K^{-}$ BaBar 20000 Ge  $a_0(980)$ Preliminary 0.024 1500 0 Signal : 80K purity 99.2% KsK<sup>1.4</sup> 1.6 1.8 KsK<sup>+</sup> s, (GeV<sup>2</sup>/c<sup>4</sup>) 10-1 K<sup>1,4</sup>K<sup>- 1.6</sup> 1.8 s<sub>0</sub> (GeV<sup>2</sup>/c<sup>4</sup>) <sup>1.2</sup>KsK-1.6 1.8 s. (GeV<sup>2</sup>/c<sup>4</sup>) 1.2 -2 t (ps) S-wave K+K<sup>-</sup> Coupled-channel Breit-Wigner a0(980)  $\mathcal{A}_{f}$ All other waves **Breit-Wigners** 

PRL 105 081803 (2010)