CP VIOLATION

Luca Silvestrini

INFN, Rome

- Introduction
- CP Violation in $\Delta F=2$ processes
 - Standard model predictions
 - Constraints on New Physics
- Conclusions and Outlook

http://www.utfit.org

INTRODUCTION

The Standard Model works beautifully up to a few hundred GeV's, but it must be an effective theory valid up to a scale $\Lambda \leq M_{planck}$:

- Two accidental symmetries of the SM are crucial for our discussion:
 - 1) Absence of tree-level flavour changing neutral currents, GIM suppression of FCNC @ the loop level
 - 2) No CP violation @ tree level
- \Rightarrow Flavour physics extremely sensitive to NP!!

The CP violation mechanism of the SM is very peculiar

- CP symmetry is explicitly broken by the Yukawa couplings
- CP is not an approximate symmetry of the model. CP violation is suppressed by mixing angles, but the phase is of O(1)
- A single source of CP violation in the weak interactions of quarks
- Three-generations unitarity: CP violation from the measurement of CP conserving observables

All these features, if experimentally confirmed, provide strong constraints on New Physics

CP physics $\Leftrightarrow -CP$ physics

$\begin{array}{ll} & & \mathbf{Triangle} \\ = 1 & & \mathbf{sides} \leftrightarrow \mathbf{angles} \\ \vdots & & \frac{V_{ud}V_{ub}^*}{V_{cd}V_{ch}^*} & & |VV^*| \leftrightarrow \alpha, \beta, \gamma \end{array}$

$$\alpha \equiv \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right), \quad \beta \equiv \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right), \quad \gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$$

> CP violation \propto the Jarlskog invariant $J = \text{Im } V_{ij} V_{kl} V_{il}^{*} V_{kj}^{*}$

ANGLES vs NON-ANGLES

CPV IN KAON MIXING: ε_{κ}

$$\epsilon_K = e^{i\phi_\epsilon} \sin\phi_\epsilon \left(\frac{\operatorname{Im}(M_{12}^K)}{\Delta M_K} + \xi\right)$$

• Aim at reaching the % level for SM error

$$-\mathsf{M}_{12}^{\mathsf{K}}: \mathsf{C}_{6} < \mathsf{Q}_{6} > + \Sigma_{i} \mathsf{C}_{8}^{i} < \mathsf{Q}_{8}^{i} > + \dots$$

- C_6 : NNLO in progress, 3.3% enhancement from η_{ct}
- <Q₆>: B_K = 0.731±0.036 UTfit average
- long-distance: estimate using Ch.p.t. Buras, Guadagnoli, Isidori '10
- $-\xi=ImA_0/ReA_0$:
 - estimate using ϵ'/ϵ few percent decrease Buras, Guadagnoli '08

Brod, Gorbahn '10

ϵ_{κ} : SM vs experiment

- SM prediction (UTfit, does not include NNLO η_{ct}): (1.9±0.2)10-3 to be compared with (2.23±0.01)10⁻³
- agreement at 1.5σ

CPV in B_q mixing in the SM & beyond

- B_a mixing is governed by:
- M₁₂, dominated by the exchange of virtual heavy states (top + NP) in loops
- Γ_{12} , dominated by real intermediate states \Rightarrow tree-level dominated

Assume that NP is a negligible correction to tree level processes

 $M^{\text{full}}_{12} = \langle \mathbf{B} | \mathbf{H}^{\text{eff}} | \overline{\mathbf{B}} \rangle = M^{\text{SM}}_{12} + M^{\text{NP}}_{12} = C_{\text{Bq}} e^{2i\phi \text{Bq}} M^{\text{SM}}_{12}$ $\Gamma_{12}^{\text{full}} \sim \Gamma_{12}^{\text{SM}}$ (+ small effects due to penguins) Notice that $\Gamma_{12}^{SM}/M_{12}^{SM} \sim real due to GIM$ suppression, since $\Gamma_{12}^{SM} \propto (V_{tb}^*V_{ta}^*)^2 D^{cc} + GIM-suppressed$ $M_{12}^{SM} \propto (V_{tb}^{V} V_{ta}^{*})^2$ On the other hand. $Arg(M^{SM}_{12})_{d} = 2\beta \sim O(1)$ $Arg(M^{SM}_{12})_{s} = -2\beta_{s} \sim O(10^{-2})$

What can we actually measure?

$$\begin{split} -\Delta m_{Bq} &= 2 \left| M^{\text{full}}_{12} \right| = C_{Bq} \Delta m^{\text{SM}}_{Bq} \\ -\Delta \Gamma_q / \Delta m_{Bq} &= \text{Re} (\Gamma^{\text{full}}_{12} / M^{\text{full}}_{12}) \sim \\ (\Delta \Gamma_q / \Delta m_{Bq})^{\text{SM}} \cos 2\phi_{Bq} / C_{Bq} \\ -A^q_{SL} &= \text{Im} (\Gamma^{\text{full}}_{12} / M^{\text{full}}_{12}) \sim - (\Delta \Gamma_q / \Delta m_{Bq})^{\text{SM}} \times \\ \sin 2\phi_{Bq} / C_{Bq} &= -\Delta \Gamma_q / \Delta m_{Bq} \tan 2\phi_{Bq} \\ -S_{J/\Psi K} \sim \sin 2(\beta + \phi_{Bd}), S_{J/\Psi \phi} \sim \sin 2(-\beta_s + \phi_{Bs}) \end{split}$$

- Use tree-level processes to determine the CKM matrix and thus disentangle NP from SM contributions to meson mixing:
 - $|V_{ub}|$ and $|V_{cb}|$ from inclusive and exclusive semileptonic B decays
 - γ from B \rightarrow DK and α from B $\rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$ decays

A FEW REMARKS

- The values of C_{ϵ} , ϕ_{Bd} and ϕ_{Bs} extracted from the analysis potentially contain a mixture of $\Delta F=1$ & $\Delta F=2$ NP contributions. Disentangling them is a difficult task.
- For the B_s analysis, we use an improved theoretical prediction for $\Delta\Gamma$: $\Delta\Gamma_s/\Gamma_s=0.14\pm0.02$ Ciuchini et al., in preparation; see also Lenz & Nierste

and allow for NP penguin effects in $\Gamma_{\rm 12}$

Luca S

14

We use the combined TeVatron likelihood which does not include the new CDF result, and the recent $A_{\mu\mu}$. Using all data we are at 3.25.

SEMILEPTONIC ASYMMETRIES

AsymmetryInputPredictionFit $A_{sL}^{d} 10^{3}$ (-0.5±5.6)(-0.9±2.7)(-2.8±2.4) $A_{sL}^{s} 10^{3}$ (-1.7±9.1)(-3.7±1.5)(-4.4±1.4) $A_{\mu\mu} 10^{3}$ (-9.6±2.9)(-2.3±1.7)(-3.7±1.4)

The DO result on $A_{\mu\mu}$ cannot be reproduced given our theoretical prediction for Γ_{12} in the SM and the assumption of no tree-level NP

Ratio of NP/SM contributions is <35% @ 95% prob. in B_ mixing, and ~70% in B_ mixing (but 2\sigma range is very large)

See also Lenz & Nierste, Lunghi & Soni, Buras & Guadagnoli, Faller et al, Lenz et al, ...

- Large NP contributions to b ↔ s
 transitions are natural in nonabelian flavour
 models, given the large breaking of flavour
 SU(3) due to the top quark mass
 Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; ...
 GUTs can naturally connect the large
- mixing in v oscillations with a large $b \leftrightarrow s$ mixingBack et al.; Moroi; Akama et al.; Chang, Masiero, Murayama; Hisano, Shimizu; Goto et al.; ...
- Might show up also in $\Delta F=1$ transitions (b \rightarrow s γ , b \rightarrow sl⁺l⁻, B \rightarrow K π , B_s \rightarrow K^{*0}K^{*0}, ...) and/or LFV ($\tau \rightarrow \mu\gamma$, $\mu \rightarrow e\gamma$)

EFT analysis of
$$\Delta F=2$$
 transitions
The mixing amplitudes $A_q e^{2i\phi_q} = \langle \overline{M}_q | H_{eff}^{\Delta F=2} | M_q \rangle$
 $H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_i(\mu) Q_i(\mu) + \sum_{i=1}^{3} \widetilde{C}_i(\mu) \widetilde{Q}_i(\mu)$
 $Q_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_L^{\alpha} \overline{q}_L^{\beta} \gamma^{\mu} b_L^{\beta}$ (SM/MFV)
 $Q_2 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_R^{\beta} b_L^{\beta}$ $Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$
 $Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_R^{\alpha} \overline{q}_R^{\beta} \gamma^{\mu} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_1 = \overline{q}_R^{\alpha} \gamma_{\mu} b_R^{\alpha} \overline{q}_R^{\beta} \gamma^{\mu} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
7 new operators beyond MFV involving quarks with different chiralities

Luca Silvestrini

HQL 2010

H_{eff} can be recast in terms of the $C_i(\Lambda)$ computed at the NP scale

- $C_i(\Lambda)$ can be extracted from the data (one by one)

- the associated NP scale Λ can be defined from

$$C_{i}(\Lambda) = \frac{LF_{i}}{\Lambda^{2}} \quad \text{tree/strong interact. NP: } L \sim 1$$

perturbative NP: $L \sim a_{s}^{2}, a_{W}^{2}$

Flavour structures:

 $\begin{array}{ll} \mathsf{MFV} & \mathsf{next-to-MFV} & generic \\ & - F_1 = F_{\mathsf{SM}} \sim (V_{tq} V_{tb}^{*})^2 & - |F_i| \sim F_{\mathsf{SM}} & - |F_i| \sim 1 \\ & - F_{i \neq 1} = 0 & - \operatorname{arbitrary} & - \operatorname{arbitrary} \\ & & \mathsf{phases} & \mathsf{phases} \end{array}$

Luca Silvestrini

HQL 2010

present lower bound on the NP scale (TeV):				
Process	C ₄ (GeV ⁻²)	Λ_{GEN} (TeV)	$\Lambda_{_{\sf NMFV}}$ (TeV)	
ε _K	4.6 10 ⁻¹⁸	47 10 ⁴	107	
B _d	9.3 10 ⁻¹⁴	3.3 10 ³	7	
B _s	1.5 10 -11	2.6 10 ²	8	

- * $\Delta F=2$ chirality-flipping operators are RG enhanced and thus probe larger NP scales
- * suppression of the 1 \leftrightarrow 2 transitions strongly weakens the lower bounds Bounds on $\Lambda_{\rm MFV}$ from ΔF =2 processes: for low tanß

 $F_{tt} \in [-0.326, 0.487] \rightarrow \Lambda_{MFV} > 8.4 (6.9) \text{ TeV}$

CPV in nonleptonic decays

- ε'/ε: ΔI=1/2 rule indicates large (huge) nonperturbative effects in (penguin) matrix elements
- The computation of $K \rightarrow (\pi \pi)_{I=2}$ amplitudes is progressing well, with the preliminary result for Re A_2 is good agreement with the physical value.
 - Normalized Im A₂ available soon.
 - This will become a benchmark computation which will be improved in the coming years (finer lattices?).
- The exploratory results for $K \to (\pi \pi)_{I=0}$ decays encourage us to proceed to physical kinematics.

 \Rightarrow an understanding of the $\Delta I = 1/2$ rule and the value of ε'/ε .

C. Sachrajda 2010

CP ASYMMETRIES IN $B \rightarrow K\pi$

$$\mathcal{A}_{K^{\pm}\pi^{\mp}} \equiv \frac{N(\bar{B}^{0} \to K^{-}\pi^{+}) - N(B^{0} - K^{+}\pi^{-})}{N(\bar{B}^{0} \to K^{-}\pi^{+}) + N(B^{0} \to K^{+}\pi^{-})} = -0.094 \pm 0.018 \pm 0.008$$

Belle collaboration
Nature 452,2008

$$\mathcal{A}_{K^{\pm}\pi^{0}} = +0.07 \pm 0.03 \pm 0.01$$

$$\Delta \mathcal{A} \equiv \mathcal{A}_{K^{\pm}\pi^{0}} - \mathcal{A}_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$$

Is this new physics? It could be but SM predictions depend on hadronic models

Luca Silvestrini

HQL 2010

- Factorization in its various incarnations (QCDF, PQCD, SCET) gives results valid in the $m_b \rightarrow \infty$ limit
- Corrections to this limit are $O(\Lambda/m_{\rm b}),$ but not calculable
- How much do the th predictions depend on power corrections?

A good fit can be obtained either for $\Lambda/m \sim 0.3$ or for NP in b \rightarrow sZ vertex. Inconclusive at present. See also Buraisamy & Kagan 08, Li & Mishima 09

CONCLUSIONS

- CP Violation is an extremely powerful test of the SM and probe of New Physics
- We are reaching the 5% th uncertainty on meson-antimeson mixing
- ϵ_k and B_d mixing give strong constraints on NP contributions, naively pushing the NP scale of several models far beyond the LHC reach

CONCLUSIONS

- CPV in B_s mixing off from SM at ~ 3σ
- Requires new sources of flavour & CPV, natural in many extensions of the SM
- Wait for confirmation from TeVatron/LHCb, look for other NP signals in b→s transitions
- Progress in CPV in nonleptonic decays slow and painful, but we won't give up...

BACKUP SLIDES

FIT PREDICTIONS vs INPUTS

	Prediction	Measurement	Pull (σ)
sin2β	0.771±0.036	0.654±0.026	2.6
α	(85±4)°	(91±6)°	<1
γ	(70±3)°	(74±11)°	<1
Δm_s	(18.3±1.3)ps⁻¹	(17.77±0.12)ps⁻¹	<1
$ V_{ub} $	(35.5±1.4)10 ⁻⁴	(37.6±2.0)10 ⁻⁴	<1
ε _K	(1.9±0.2)10 ⁻³	(2.23±0.01)10 ⁻³	1.5
$BR(B \rightarrow \tau v)$	(81±7)10 ⁻⁶	(172±28)10 ⁻⁶	3.2

RESULTS OF GENERALIZED UTA

