

Marta Calvi University of Milano Bicocca and INFN

Summary: CKM Physics

Precise measurement of CKM elements
Tests of unitarity
Constraints from fit to UT
Searches for NP

Disclaimer: it was a very rich session with 9 excellent talks, a lot of results could not be included in this short summary

Cecilia Tarantino

$$\epsilon_{\kappa}, \Delta m_{d}, \left| \frac{\Delta m_{s}}{\Delta m_{d}} \right|, \left| \frac{V_{ub}}{V_{cb}} \right| \xrightarrow{\text{relying on theoretical calculations}} \text{of hadronic matrix elements}$$

 $\alpha, \gamma (2\beta + \gamma) \xrightarrow{\text{independent from theoretical calculations}} + \gamma$

overconstrain the CKM parameters consistently

The UTA has established that the CKM matrix is the dominant source of flavour mixing and CP violation

From a closer look

Cecilia Tarantino

	Prediction	Measurement	Pull
sin2β	0.771±0.036	0.654±0.026	2.6 ←
γ	69.6°±3.1°	74°±11°	<1
α	85.4°±3.7°	91.4°±6.1°	<1
$ V_{cb} \cdot 10^3$	42.69±0.99	40.83±0.45	+1.6
$ V_{ub} \cdot 10^3$	3.55±0.14	3.76±0.20	<1
ε _κ · 10 ³	1.92±0.18	2.230±0.010	-1.7 ←
$BR(B \to \tau v) \cdot 10^4$	0.805±0.071	1.72±0.28	-3.2 ←

PRECISION FLAVOUR PHYSICS						orio icz
Experiments 2010			Lattice 2010		2006	
$ V_{us} f_{+}(0)$	0.21661 ± 0.00047	0.2%	f ₊ (0)	0.5%	0.9%	
$\frac{ \mathbf{V}_{us} \mathbf{F}_{K}}{ \mathbf{V}_{ud} \mathbf{F}_{\pi}}$	0.27599 ± 0.00059	0.2%	Γ_κ/ Γ _π	0.9%	1.1%	
ε _κ	(2.228 ± 0.011) × 10 ⁻³	0.5%	Β _κ	5%	11%	
Δm _d	$(0.507 \pm 0.005) \text{ ps}^{-1}$	1%	$f_B \sqrt{B_B}$	5%	13%	
Δm _s	(17.77 ± 0.12) ps ⁻¹	0.7%	$f_{BS}^{}\sqrt{B}_{BS}^{}$	5%	13%	
Sin2β	0.655 ± 0.027	4%	—	—	—	L .
$\begin{array}{c} KTEV_{55}^{*} \\ Kaons at the Tevatron \\ \widetilde{VOV} \\ \widetilde{VOV} \\ \widetilde{VOV} \end{array} \\ \widetilde{VOV} \\ \widetilde{VOV } $						

$|V_{us}|$ and Charge Lepton Universality from τ Decays

In summary BaBar & Belle have measured 9 of the main τ strange branching fractions.

The results have been combined with previous τ measurements to extract: $|V_{us}|$ extracted from τ 's Charged Lepton Universality from τ 's

|Vus| ×f₊(0)

Vus determined from kaon, hyperon, and τ decays The most precise measurement from K_{13} decays

$$\Gamma(K_{l3}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} S_{EW} |V_{us}|^2 |f_+(0)|^2 I_{K,l}(\lambda) (1 + 2\Delta_K^{SU(2)} + 2\Delta_{K,l}^{EM})$$

Branching fractions, lifetimes Dalitz plot analysis to obtain $I_{K,l}(\lambda)$

K [±] semileptonic branching fractions		Measurements	
	BNL-E865	$BR(K_{\rm e3})/BR(\pi\pi^{0}\text{+}K_{\mu3}\text{+}\pi\pi^{0}\pi^{0})$	0.1962(36)
	NA48/2	BR(K _{ε3})/BR(ππ ⁰)	0.2470(10)
	NA48/2	BR(K _{μ3})/BR(ππ ⁰)	0.1637(7)
	KLOE	BR(K _{e3})	0.04965(53)
	KLOE	BR(K _{µ3})	0.03233(39)

C. Bloise

LNF-INFN

The 1st row unitarity test

Vittorio

Lubicz

V_{ub} from inclusive $B \rightarrow X_u lv$ decays

Nicola Gagliardi

- New BaBar recoil analysis;
- Belle multivariate analysis;

Belle recoil analysis: results

5	1035	$B \rightarrow$	X_u	lv	event	S

$p_{\ell}^{*B} > 1.0 \text{ GeV}$	$\Delta \mathcal{B}/\mathcal{B}$ (%)
$\mathcal{B}(D^{(*)}\ell\nu)$	1.2
$(D^{(*)}\ell\nu)$ form factors	1.2
$\mathcal{B}(D^{**}e\nu)$ & form factors	0.2
$B \rightarrow X_u \ell \nu$ (SF)	3.6
$B \rightarrow X_u \ell \nu \ (g \rightarrow s\bar{s})$	1.5
$\mathcal{B}(B \rightarrow \pi/\rho/\omega \ell \nu)$	2.3
$\mathcal{B}(B \rightarrow \eta, \eta' \ell \nu)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ un-meas.	2.9
Cont./Comb.	1.8
Sec./Fakes/Fit.	1.0
PID/Reconstruction	3.1
BDT	3.1
Systematics	8.1
Statistics	8.8
PRL 104:021801	(2010)

 $\Delta B(B \rightarrow X_u l \nu; p_l > 1.0 \, GeV) = 1.963 \times (1 \pm 0.088_{stat} \pm 0.081_{syst}) \times 10^{-3}$

Nicola Gagliardi

|V_{ub}| results (HFAG average, GGOU)

$$|V_{ub}| = \sqrt{\frac{\Delta B(B \rightarrow X_u l \nu)}{\Gamma_{thy} \tau_B}}$$
Acceptances provided by many different theoretical models;
Many |V_{ub}| values.

$|V_{\mu\nu}| = (4.30 \pm 0.16 \pm 0.13 - 0.20) \times 10^{-3}$

δ Vub	+4.9% -6.3%
Statistical	2.3%
Exp.systematics	1.9%
b→ctv model	1.2%
b→utv model	1.6%
Non pert	1.5%
Higher order par.	2.5%
q ² tail model	1.7%
Weak Annihilation	-3.9%
Weak Annihilation	-3.9%

V_{ub} from B exclusive decays

Isamu NAKAMURA

 $B^0 \rightarrow \pi^- \ell^+ \nu$ untagged 其ノ六

Belle Preliminary

10

V_{ub} can be extracted from the partial Branching Fraction,

$$|V_{\rm ub}| = \sqrt{\Delta \mathcal{B}(q^2)/\tau_{\rm B^0}\Delta\zeta},$$

where,

Δζ: form factor in corresponding q^2 range

Result

	q^2 (GeV ²)	$\Delta \zeta \text{ (ps}^{-1}\text{)}$	$ V_{\rm ub} (10^{-3})$
HPQCD	> 16	2.07 ± 0.57	$3.55 \pm 0.09 \pm 0.09 ^{+0.62}_{-0.41}$
FNAL	> 16	1.83 ± 0.50	$3.78 \pm 0.10 \pm 0.10 ^{+0.65}_{-0.43}$
LCSR	< 16	5.4 ± 1.4	$3.64 \pm 0.06 \pm 0.09^{+0.60}_{-0.40}$
ISGW2	all	9.6 ± 4.8	$3.19 \pm 0.04 \pm 0.07 \substack{+1.32 \\ -0.59}$

Form factor uncertainties largest contribution

F.F. model independent V_{ub} extraction method (PRD79054507 (2009))

$$|V_{\rm ub}| = (3.43 \pm 0.33) \times 10^{-3}$$

Exclusive vs Inclusive Vub

Vittorio Lubicz

• The uncertainty of inclusive Vub estimated from the spread among different models. This is questionable

V_{cb} from $B \rightarrow X_c | v$ inclusive decays Kyle J. Knoepfel

$B \rightarrow X_c l v$ Measurements

Hadronic X_c mass moments (k = 1 – 6)

$$\begin{split} \langle M_X^k \rangle &= \frac{\sum_i (M_X^k)_i N_i}{\sum_i N_i} \qquad \sigma^2 \left[\langle M_X^k \rangle \right] = \frac{\sum_{i,j} (M_X^k)_i X_{ij} (M_X^k)_j}{\left(\sum_i N_i\right)^2} \\ \langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle \end{split}$$

- Mixed mass/energy moments (k = 2, 4, 6)
 - · Gambino & Uraltsev: Eur. Phys. J. C 34, 181 (2004)

$$n_X^2 = M_X^2 c^4 - 2\tilde{\Lambda} E_X + \tilde{\Lambda}^2$$

- Fitting method to extract SM & QCD parameters:
 - Buchmüller & Flächer: PRD 73, 073008 (2006)
 - B. Aubert et al.: PRL 93, 011803 (2004)

 $B \rightarrow X_{\varsigma} \gamma$: absolute BR and A_{co}

Kyle J. Knoepfel

- $B \rightarrow X_s \gamma$ decays are sensitive to new physics through new physics particles propagating in penguin diagram
 - Branching fraction result from Belle consistent with SM
 - New preliminary A_{CP} result from BABAR consistent with SM

$$B \rightarrow X_{s+d} \gamma \text{ Result}$$

$$\mathcal{B}(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.7 \text{ GeV}} = \left(3.45 \pm 0.15_{\text{stat.}} \pm 0.40_{\text{syst.}}\right) \times 10^{-4}$$

$B \rightarrow X_c lv and B \rightarrow X_s \gamma$

Kyle J. Knoepfel

Heavy Flavor Averaging Group (HFAG) Fit

- Measurements from multiple collaborations used to calculate $V_{cb},\,m_b$ and $\mu_{\pi}{}^2$

 Tension between semi-leptonic results and SL+ radiative penguin results—source of much discussion

V_{cb} from B exclusive decays

 \Box Exclusive V_{cb}

		$(\mathcal{F}(1), \mathcal{G}(1)) V_{cb} \times 10^{-3}$	$\mathcal{F}(1), \mathcal{G}(1)$	$ V_{\rm cb} \times 10^{-3}$	
	$B\to D^*\ell\nu$	36.0 ± 0.5	0.91 ± 0.02	36.7 ± 0.8	
	$B\to D\ell\nu$	42.3 ± 1.5	1.07 ± 0.02	39.4 ± 1.6	
• V _{cb} inclusi	ve	$ V_{\rm cb} = (41.9 \pm 0$	$.7) \times 10^{-3}$		>2 σ

B⁺→I⁺v: Theoretical Motivation

Alejandro Pérez

$B^+ \rightarrow e^+ \nu$ and $B^+ \rightarrow \mu^+ \nu$

- No events seen. All upper limits (90% C.L.) above SM value
- BaBar hadronic tag:

Phys.Rev.D79:091101, 2009. arXiv:0903.1220

- Br(B⁺→e⁺ν) < 1.9×10⁻⁶
- Br(B⁺ \to $\mu^+\nu$) < 1.0×10⁻⁶
- BaBar semileptonic tag:

Phys.Rev.D81:051101, 2010. arXiv:0809.4027

- $Br(B^+ \rightarrow e^+ v) < 0.8 \times 10^{-5}$
- Br(B⁺ \rightarrow $\mu^+\nu$) < 1.1×10⁻⁵
- Belle report the limits:
 Phys.Lett. B 646, 67 (2007)
 - $-Br(B^+ \rightarrow e^+ v) < 0.98 \times 10^{-6}$
 - Br(B⁺→μ⁺ν) < 1.70×10⁻6

Alejandro Pérez, HQL 2010 - Laboratori Nazionali di Frascati - October 12th 2010

Dana Lindemann

$B \rightarrow \tau v$: Comparison of Results

Dana Lindemann

	$B \rightarrow D^{(*)} \tau v$	Compari	ison of Re	sults
A		$\left. \begin{array}{c} B^+ \to \overline{D}^{*0} \tau^+ \nu_\tau \end{array} \right.$	$\begin{split} & [2.12^{+0.28}_{-0.27} \pm 0.29]\% 8.1\sigma \\ & [3.04^{+0.69}_{-0.66} + 0.40}_{-0.66}]\% 3.9\sigma \\ & [2.25 \pm 0.48 \pm 0.22]\% 5.3\sigma \end{split}$	- Belle Inclusive
1		$\begin{cases} B^0 \to D^{*-} \tau^+ \nu_\tau \end{cases}$	$ \begin{array}{l} [2.02\substack{+0.40\\-0.37}\pm0.37]\% & 5.2\sigma \\ [2.56\substack{+0.75\\-0.66}\substack{-0.22}\end{array}]\% & 4.7\sigma \\ [1.11\pm0.51\pm0.04]\% & 2.7\sigma \end{array} $	- Belle Hadronic arXiv:0910.4301 (2009)
		$\begin{cases} B^+ \to \overline{D}{}^0 \tau^+ \nu_{\tau} \end{cases}$	$\begin{array}{l} [0.77 \pm 0.22 \pm 0.12]\% & 3.5\sigma \\ [1.51^{+0.41}_{-0.39} + 0.19]\% & 3.8\sigma \\ [0.67 \pm 0.37 \pm 0.11]\% & 1.8\sigma \end{array}$	PRD79, 092002 (2009) PRL100, 021801 (2008) - Standard Model
		$\begin{cases} B^0 \to D^- \tau^+ \nu_\tau \end{cases}$	$[1.01^{+0.46}_{-0.41}, -0.13}_{-0.41}]\%$ 2.6 σ $[1.04 \pm 0.35 \pm 0.15]\%$ 3.3 σ	Chen &Geng, JHEP 0610, 053 (2006)

Dana Lindemann

Mesurement of CKM elements has reached excellent precision. But still open space for new results to lead to NP discovery.