Nuclear recoil simulation with SRIM

CYGNO simulation meeting 26/10/2020

F. Di Giambattista, A.F.V. Cortez, D. Pinci, E. Baracchini GSSI, INFN

SRIM

• SRIM is a collection of software packages which calculate many features of the transport of ions in matter

TRIM Setup Window 😑 😣							
Read Me TRIM Demo	/indow)	Type of TRIM Cal	culation of Damage	B ?			
Restore Last TRIM Data	Plasic Plot Symbol Name of Elemination PT Hudrogen	s NO Graphics (Fastest Calc., or runnin Atomic Number Mass (amu) Energy () 1 1,008	g TRIM in background) keV) Angle of Incidence 1 ? 0	?			
TARGET DATA Target Layers Add New Layer Layer Name Width X He-CF4 1 mm	2 Density Compound (g/cm3) Corr Gas	Input Element Add New Element to Laver Symbol Name Num YPT He Helium Y 2 XPT C Carbon Y 6 XPT F Fluorine Y 9	Antiset Compound Dictionary Weight Atom (amu) Damae Stoich or % Damae Disp 4.003 3076 23.01 5 1 12.01 5384 15.32 28 2 18.99 1538 61.55 25 2	re (eV) ? att Surf ? 7,4 2			
Special Parameters Name of Calculation He CF4 ? AutoSave at Ion # 100 ? Total Number of Ions 1000 ? Random Number Seed	Stopping Power Version SRIM-2008 Plotting Window Depths Min 0 / Max 10000000 /	? Output Disk Files Re ? ? Ion Ranges Re ? ? Backscattered Ions Re ? ? Transmitted Ions/Recoils Re 2 Sputtered Atoms Re Re 2 Collision Details Re Re	Esume saved TRIM calc ? Clea Calculat Range File" Increment (eV)	r All e Quick Table Menu			
		Proble	m Solving Qu	jit			

- Target: density, width, layer composition (atomic percentages)
- *Ion*: element, energy, angle
- Output: n° of ions, plotting window, random number seed, output files
- Type of calculation:
 - Quick: "if you don't care about details of target damage"
 - **Full Cascade**: follows every recoil until its energy drops below the lowest displacement energy
 - Monolayer collision steps: every collision is calculated without any approximation

Quenching factor

- Quick calculation mode, 1000 ions per run
- IONIZ.TXT: primary and secondary ionization energy loss
 - Integrating over whole range results in the total ionization energy loss

Епегду	keV) (E)e	(eV/ion) (QF)e	(E)r (eV/ion)	(QF)r (E)1	ot (eV/ion) (QF)tot	
1	647.477	0.647477	41.4202	0.0414202	688.897	0.688897
2	1491.7	0.745849	66.214	0.033107	1557.91	0.778956
3	2381.24	0.793747	84.8442	0.0282814	2466.08	0.822028
4	3307.53	0.826883	95.4481	0.023862	3402.98	0.850745
5	4263.85	0.85277	105.601	0.0211201	4369.45	0.87389
б	5216.2	0.869366	116.483	0.0194138	5332.68	0.88878
7	6179.19	0.882741	122.845	0.0175492	6302.03	0.90029
8	7168.58	0.896072	124.298	0.0155373	7292.87	0.911609
9	8124.42	0.902713	130.208	0.0144676	8254.63	0.917181
10	9103.29	0.910329	135.636	0.0135636	9238.92	0.923892

====== H (191) into Helium ======= SRIM-2013.00
Ion and Recoil IONIZATION See SRIM Outputs\TDATA.txt for details
======= TRIM Calc.= H(10 keV) ==> He-CF4(700 um) ===================================
Recoil/Damage Calculations made with Kinchin-Pease Estimates
See file : SRIM Outputs\TDATA.txt for calculation data Ion = H Energy = 10 keV
Layer 1 : He-CF4
Layer # 1- Density = 6.511E19 atoms/cm3 = .0015 g/cm3
Layer # 1- He = 23.0 Atomic Percent = 6.38 Mass Percent Layer # 1- C = 15.3 Atomic Percent = 12.7 Mass Percent
Layer # 1- F = 61.5 Atomic Percent = 80.8 Mass Percent
Total Ions calculated =001000.00
Ionization Energy Units are >>>> eV /(Angstrom-Ion) <<<<

TARGET	IONIZ.	IONIZ.
DEPTH	by	by
(Ang)	IONS	RECOILS
700000.E-01	3320.13E-06	1257.07E-09
140000.E+00	3239.37E-06	4406.93E-09
210000.E+00	3203.42E-06	3517.30E-09
280000.E+00	3164.92E-06	7391.93E-09
350000.E+00	3206.12E-06	1270.25E-08
420000.E+00	3218.09E-06	2243.15E-08
490000.E+00 560000.E+00 630000.E+00	3125.33E-06 3107.91E-06	

Quenching factor

E.Marconato used the Tables of Stopping • Powers and Ion Ranges $QF = (dE/dx)_{elec} / [(dE/dx)_{elec} + (dE/dx)_{nuclear}]$ $(dE/dx)_{elec} = (dE/dx)_{ioniz.e} + (dE/dx)_{other.e}$ SRIM version ---> SRIM-2013.00 Calc. date ---> ottobre 14. 2020 Disk File Name = SRIM Outputs\H HeCF4.txt Ion = Hydrogen [1] . Mass = 1.008 amu Target Density = 1.5630E-03 g/cm3 = 6.5081E+19 atoms/cm3 Target is a GAS ====== Target Composition ======= Atom Atomic Atom Mass Percent Name Numb Percent 006.39 He 2 023.08 6 015.38 012.77 C 080.84 9 061.54 _____ Bradd Correction = -4.14%Stopping Units = eV / Angstrom See bottom of Table for other Stopping units dE/dx dE/dx Projected Longitudinal Ton Lateral Elec. Nuclear Straggling Energy Range Stradolind 8.119F-04 2.495E-04 34.05 999999 ke\ 33.59 26.22 ur 36.60 um 28.30 um 1.10 keV 8.515E-04 2.419E-04 37.13 um 40.68 um 39.07 um 30.33 um 1.20 keV 8.894E-04 2.348E-04 1.30 keV 9.257E-04 2.282E-04 44.26 um 41.47 um 32.32 um 9.606E-04 2.220E-04 47.85 um 43.80 um 34.27 um 1.40 keV 1.50 keV 9.944E-04 2.162E-04 51.46 um 46.06 um 36.18 um 1.60 keV 1.027E-03 2.107E-04 55.07 um 48.26 um 38.05 um 1.70 keV 1.059E-03 2.056E-04 58.70 um 50.39 um 39.89 um

Quenching factor (protons)

H in He:CF4

Quenching factor (He)

He in He:CF4

Quenching factor (C)

C in He:CF4

Quenching factor (F)

F in He:CF4

Pysrim

Module for automating SRIM calculations

- Defines ion type and energy
- Defines target properties (atomic composition, density, width)
 - Adjust the target width according to ion type and energy
 - We found a way to fix the width of the bins in IONIZ.TXT (by default it's 1/100 of the width)
- Defines number of events and type of calculation
- Saves and renames the files of interest

This allows us to simulate event by event in an efficient way

Pysrim – target width

From the data of the quick calculation we estimated the target width necessary to fully contain the events; fit function $p_0 E^{p_1}$

Energy Depth Lateral Distance (A) Se Ion Atom Recoil Target Target Target Target Numb (keV) (A) Y Axis Z Axis (eV/A) Hit Energy(eV) DISP. VAC. REPLAC INTER ³00003³60,45E-02³85759,E+01³-6336,E+02³ 1130,E+03³0000,00³ F ³69625,E-03³ <== Start of New Cascade ³ Recoil Atom Energy(eV) X (A) Y (A) Z (A) Vac Repl Ion Numb 00003= 09 69625.E-03 8576.E+02 -6336.E+02 1130.E+03 1 00 Û<ÄPrime RecoilÛ Û 00001 Û 00002 02 59339,E-04 8605,E+02 -6375,E+02 1122,E+03 1 00 Û 02 82104,E-04 8576,E+02 -6339,E+02 1130,E+03 1 00 Û Û 00003 _____ Summary of Above Cascade ==> 369625, E-03300000330000003300000033 ³00003³22,55E-02³58633,E+01³-8303,E+02³ 9538,E+02³0000,00³ He ³24486,E-03³ <== Start of New Cascade _____ Recoil Atom Energy(eV) X (A) Y (A) Z (A) Vac Repl Ion Numb 00003= Û 00001 02 24486,E-03 5863,E+02 -8303,E+02 9538,E+02 1 00 Û<ÄPrime RecoilÛ ³00003³19,60E-02³58295,E+01³-8267,E+02³ 9411,E+02³0000,00³ F ³37140,E-03³ <== Start of New Cascade ³ _____ ===== pysrim run ====== SRIM-2013.00 Ion and Recoil IONIZATION See SRIM Outputs\TDATA.txt for details _____ See file : SRIM Outputs\TDATA.txt for calculation data = C Energy = 1 keV Ion ========= TARGET MATERIAL Laver 1 : None Laver Width = 18200.E+01 A ; Layer # 1- Density = 6.353E19 atoms/cm3 = .0015 g/cm3 Layer # 1- C = 15.3 Atomic Percent = 12.7 Mass Percent Layer # 1- He = 23.0 Atomic Percent = 6.38 Mass Percent Laver # 1- F = 61.5 Atomic Percent = 80.8 Mass Percent Total Ions calculated =000001.00 Ionization Energy Units are >>>> eV /(Angstrom-Ion) NOTE: Because of the application of straggling to the ion energy, Ionization is not accurate for less than 20 ions! IONIZ. IONIZ. TARGET DEPTH by bу IONS RECOILS (Ang) 182001.E-02 2253.74E-06 4290.24E-10

364001.E-02 2174.91E-06 0000.00E+00 546001.E-02 1710.33E-06 0000.00E+00 COLLISON.TXT includes all the details of every collision with a target atom (also follows every cascade) But It doesn't provide the ionization energy losses

IONIZ.TXT gives the ionization energy losses divided in the *ions* component (leading to the primary ionization) and a *recoils* component (leading to secondary ionization) But It doesn't provide the 3D position

 \rightarrow We need both

Ioniz-3D.TXT – only included in 2013 version

SRIM	1-2013.00					
Ion This is a s These value	and Recoil IONI pecial 3-D arra s can be used a	ZATION y of 100x100 v s input to oth	alues. er graphics so	ftware.		
===== TRIM	Calc.= H(1 keV) ==> He-CF4(150 um) =====			
See file : Ion = H ==================================	SRIM Outputs\T I Energy = 1 k = TARGET MATERI 2-CF4	DATA.txt for eV AL ========	calculation d	ata ======		
Layer Width Layer # 1- Layer # 1- Layer # 1- Layer # 1-	= 15000,E+02 A Density = 6.51 He = 23.0 Atom C = 15.3 Atom F = 61.5 Atom	; 1E19 atoms/cm3 ic Percent = 6 ic Percent = 1 ic Percent = 8 ==================================	= .0015 g/cm3 .38 Mass Perce 2.7 Mass Perce 0.8 Mass Perce	nt nt nt		
Total Ions	calculated =000	001,00				
Ioniz	ation Energy Un	its are >>>>	eV /(Angstrom	-Ion) <<<<		
- NOTE: Bec - energy, I	ause of the app conization is no Below is an ar It includes io The values for	lication of st t accurate for ray of 10,000 nization by bo m a 100x100 sp	raggling to th less than 20 values of targ th the ion and atial array.	e ion - ions! - et Ionization. all recoils.		
TARGET DEPTH (Ang)	The depth valu The grid of va The Beam enter	es are in the lues are space s the target a	first column, d at intervals t column #50 o	on the left. of >> 1500 n f the top row.	m <<	
15000E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00
30000E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00

Ionization energy losses (ion+recoils) in 2D space

Pysrim is optimised for SRIM-2008, we're trying to figure out how to produce this file

00	0000,00E+00											
00	0000,00E+00											
00	0000,00E+00											
00	0000,00E+00	0000,00E+00	0000,00E+00	0000,00E+00	0000,00E+00	0000,00E+00	3681,61E-07	3959,65E-07	0000,00E+00	0000,00E+00	0000,00E+00	0000,00E+00
00	0000,00E+00	0000,00E+00										
00	0000.00E+00	0000.00E+00	0000.00E+00	0000.00E+00	0000.00E+00	0000,00E+00	0000,00E+00	0000,00E+00	0000.00E+00	0000.00E+00	0000.00E+00	0000.00E+00
	0000,002.00	0000,002.00	0000,002.00		,	,	,	,	,	,		
0	0000,00E+00											
00	0000,00E+00 0000,00E+00											
00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 5580,32E-07	0000,00E+00 0000,00E+00 2729,35E-07	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00
)0)0)0)0	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 5580,32E-07 0000,00E+00	0000,00E+00 0000,00E+00 2729,35E-07 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00
000000000000000000000000000000000000000	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 5580,32E-07 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 2729,35E-07 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00
0 0 0 0 0 0 0 0 0	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 5580,32E-07 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 2729,35E-07 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00	0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00 0000,00E+00

Track reconstruction (He)

He recoil 1 keV

(mn) z 40 <u>____________</u>600-400-20-200-0 0--20 -200 -400--40 -600-40 (LIIII) 20 1600 Unnf00 200 0 0 -200 -20 -400 6Q(um) 4Ò0 -40200 40 x (um) -600 Ó 20 -200 Ó -400 -20 -40 -600

He recoil 100 keV

He recoil 50 keV

- Red dots are recoils produced by the primary ion
- Blue dots are secondary recoils, produced by primary recoils

Track reconstruction (C)

Ê300-

Data from COLLISON.TXT

- Red dots are recoils produced by the primary ion
- Blue dots are secondary recoils, produced by primary recoils

Track reconstruction (F)

F recoil 1 keV

F recoil 50 keV

F recoil 100 keV

Data from COLLISON.TXT

- Red dots are recoils produced by the primary ion
- Blue dots are secondary recoils, produced by primary recoils

He recoil 1 keV

He recoil 1 keV

y (um)

Conclusions and future work

- Solve pysrim minor issues
- Run for several ions
- Better estimate the quenching factor
- Merge information of COLLISON.TXT, IONIZ.TXT
 - With the help of Ioniz-3D.TXT and/or EXYZ.TXT?

Calc. Da	ate= 10-15-2	2020, Time= 1	L5:54:08 SRIM-2013.00	0 ========		
=		Ion Energy	/ vs Positio	n File		====
= AXI = (I1	IS DEFINITIC f beam enter	NS: X=Depth, target at	, Y,Z= Latera an angle, t	al plane of this tilt is the second	================================ target surfac in Y directio	=== :e.= on)=
= Sho	own are: Ior	Number, Ene CALCULATIO	ergy (keV), X DN DATA ==	X, Y, Z Posi	tion =======	=
Ion Da	ata: Name, M H G	Mass, Ener <u>o</u> 001,01 1keV	gy , Energy 1 10eV	Interval		
Ion Number	Energy (keV)	Depth (X) (Angstrom)	Y (Angstrom)	Z (Angstrom)	Electronic Stop.(eV/A)	Energy Lost to Last Recoil(eV)
0000001	1,0000E+00 9.8998E-01	0,0000E+00 1.3074E+04	0,0000E+00 3.2194E+01	0,0000E+00 5.9332E+01	8,1236E-04 8.0828E-04	0,0000E+00 1.1696E-11
0000001 0000001	9,7999E-01 9,6988E-01	2,5249E+04 3,8091E+04	2,9753E+01 6,2757E+01	3,9592E+02 8,6065E+02	8,0420E-04 8,0004E-04	4,3015E-04 1,4780E-01
0000001	9,5996E-01 9,4997E-01	4,8696E+04 6,0790E+04 7,1956E+04	9,6398E+02 2,4714E+03	8,1966E+02 -4,4660E+02	7,9594E-04 7,9178E-04	0,0000E+00 0,0000E+00 2,3168E-12
0000001	9,2926E-01 9,1999E-01	8,3685E+04 9,3980E+04	5,2339E+03 8,2779E+03	-2,2230E+03 -2,0528E+03	7,8310E-04 7,7919E-04	1,0239E+00 2,4458E-09
0000001 0000001	9,0989E-01 8,9996E-01	1,0632E+05 1,1873E+05	1,2290E+04 1,6538E+04	-2,0175E+03 -3,2314E+03	7,7490E-04 7,7066E-04	4,8194E-01 3,8945E-10