Study of alternative gas mixtures for RPCs

Giorgia Proto, Barbara Liberti, Rinaldo Santonico on behalf the ATLAS RPC Tor Vergata group

RPC 2020 conclusions

Mixtures under test: HFO1234ze/CO₂/i-Butane/SF₆:

- 29/56/14/1
- 33/56/10/1
- 38/56/5/1
- o 28/66/5/1
- o 33/61/5/1
- HFO/i-C₄H₁₀ variable ratio: the decrease of the HFO in the mixture produces a decrease of the operating voltage but does not change the delivered charge, which is the same in the three mixtures and has a value of ~30 pC. Also the avalanche-extra charge separation is the same in the three mixtures
- **HFO/CO₂ variable ratio:** The decrease of the HFO has the effect to decrease both the operating voltage and the delivered charge. The voltage decrease is ~400 V every 5% of HFO reduction and the delivered charge decrease is ~ 10 pC comparing the mixture with more HFO with the mixture with less HFO

What's new

RPC2020 results suggests that HFO concentration could be lowered below the 28% value. According to present understanding, less HFO means less Fluorine molecules inside the mixture and a slower detector ageing

Test with mixtures with low HFO content

Experimental setup: Trigger and DAQ

Experimental setup: RPC chamber under test

<u>lonic signal</u> :read out on a resistance on the ground graphite electrode equal to

Definition of the analysis Parameter

Efficiency criteria

- signals which cross an amplitude threshold equal to the 5 Root Mean Square of the background window;
- The background is calculated in a time window of 40 0 ns which anticipates the avalanche signal;
- The average value of the RMS over all the HV scans is 0 ~ 1.5 mV
- Only the events in which the confirm chamber has been 0 efficient have been considered in the analysis

Confirm chamber efficiency

Avalanche signal

Run number

Streamer and extra charge definition

- Low charge and low time over threshold signals have been considered as avalanche signals
- Medium charge and high time over threshold signals have been considered as **extra-charge signals**
- High charge and high time over threshold signals have been considered as streamer signals

Streamer:

signal with a charge content more than <u>30 pC</u> and a time over threshold more than 30 ns

Extra-charge signal: signal with a charge content more than 5 pC and less than <u>30</u> <u>pC</u> with a time over

1<u>0 ns</u>

Charge Definition

Avalanche charge : integrated charge in 10 ns around the first peak in the time window after the background time (40 ns)

Total prompt charge: integrated charge from the background time (40 ns) to the end of the time window (200 ns)

Total charge (ionic charge):

integrated charge from the background time (15 μ s) to the end of the time window (100 μ s)

Mixtures under study

HFO/CO2 Variable Ratio (constant i-butane/SF6=5/1)

 $HFO/CO_2/i-C_4H_{10}/SF_6 =$

- ° 25/69/5/1
- 0 20/74/5/1
- O <u>15/79/5/1</u>
- 0 10/84/5/1
- ° <u>5/89/5/1</u>

CO2/i-C4H10 Variable Ratio (constant HFO/SF6=5/1)

HFO/Co2/i-C4H10/SF6 = 0 <u>5/84/15/1</u>

- ° <u>5/79/10/1</u>
- ° <u>5/89/5/1</u>

Efficiency study

- Absolute efficiency plateau value
- High voltage working point
- Study of the streamer and extra charge probability
- Separation between avalanche regime and streamer/extra charge appearance

Charge study

Avalanche, total prompt and ionic charge value in HV point of interest
Study of the charge distributions

Results

Standard mixture as reference

Efficiency and streamer probability as a function of the high voltage

Charge distribution at different efficiency values

i-Butane/SF₆=constant= $5/1 - CO_2 = \frac{89}{84} - \frac{79}{74} = 89$

% HFO1234ze	V _{knee}	Efficiency @plateau	%streamer @ V _{knee} + 200 V	%extra charge@ V _{knee} + 200 V
5%	8.5 kV	93%	8.5%	46%
10%	9 kV	93.5%	3%	41%
15%	9.5 kV	96.5 %	0.6%	31%
20%	9.9 kV	98%	0.8%	30%
25%	10.4 kV	98%	0.7%	37%

Vknee= High voltage **@90% efficiency**

i-Butane/SF₆=constant= $5/1 - CO_2 = \frac{89}{84} - \frac{79}{74} = \frac{89}{84} + \frac{1}{9} = \frac{1}{2}$

Vknee= High voltage @90% efficiency

HFO1234ze/i-Butane/CO₂/SF₆=15/79/5/1: Total prompt charge distribution

<u>HFO1234ze/SF₆= constant=5/1 - $CO_2=\frac{89/84}{79}$ </u>

Efficiency, streamer probability and charge as a function of the high voltage

Subject to flammability limits

% i-butano	Vknee	%streamer @ V _{knee} + 200 V	%e cha V _{knee}
5%	8.5 kV	8.5%	4
10%	8.45 kV	3.5%	4
15%	8.4 kV	1%	3

% I-butano	Avalanche charge@ V _{knee} + 200 V	Total prompt @ V _{knee} + 200 V	Ionic @ V _{kr}
5%	2.1 pC	11.5 pC	50
10%	2.2 pC	7.3 pC	37
15%	1.8 pC	5.3 pC	30

Vknee= High voltage @90% efficiency

Conclusions

• These results have been presented at the SIF 2020 conference but there is not a publication;

• We have not yet selected a mixture which satisfies ATLAS requirements both for performance and ageing, but with this systematic work we are expanding our knowledge on gas mixtures properties

Next steps

• The new HFO (HFO1233zd), C₃H₂ClF₃, which has been already presented during RPC2020, can not be used as primary gas, but the addition of small amounts to the mixture could give benefits. To be investigated

To be discussed

• Could be a good idea to test the mixture composed by HF/CO2/i-butane/SF6= 25/69/5/1 under irradiation? • If we want to continue with the ECOGAS2 mixture we will test it here in Rome using cosmic rays

Backup