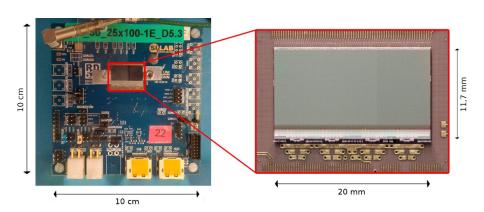
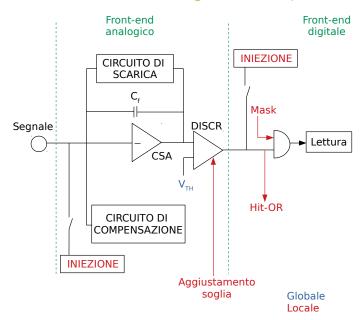

TEST DI CHIP DI LETTURA PER IL RIVELATORE A PIXEL DI ATLAS AD HIGH-LUMINOSITY LHC

Alessandra Palazzo

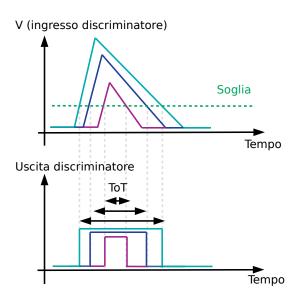
22/10/2020

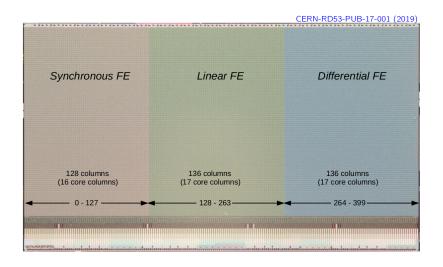
Indice


- II chip RD53A
- Calibrazione del chip RD53A SN: 0x1995
- Caratterizzazione del chip RD53A SN: 0x1995

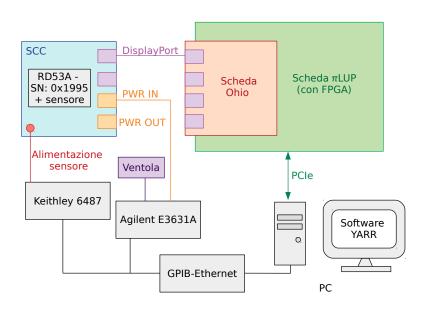

II chip RD53A: Single Chip Card

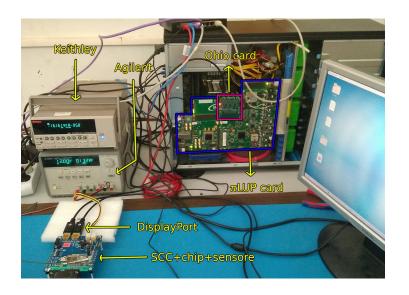
Single Chip Card (SCC)


Chip RD53A: 76800 pixel


Elettronica di front-end di un generico chip di lettura

Time over Threshold (ToT)

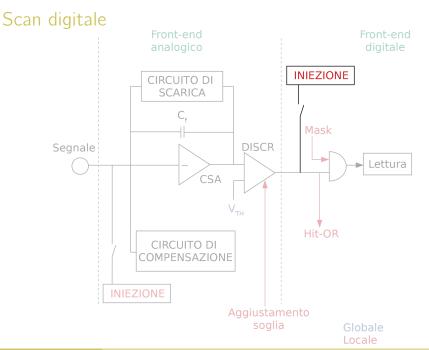

Il chip RD53A: 3 logiche di front-end


Indice

- II chip RD53A
- Calibrazione del chip RD53A SN: 0x1995
- Caratterizzazione del chip RD53A SN: 0x1995

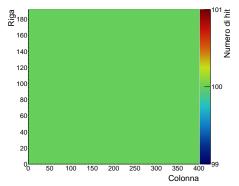
Setup sperimentale

Setup sperimentale

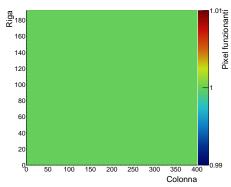


Procedura di configurazione del chip

- *Scan*: verifica della funzionalità del chip o misura dei parametri di configurazione
- Tuning: modifica dei parametri di configurazione in risposta all'iniezione di una quantità nota di carica
- Descrizione procedura di configurazione: http://yarr.web.cern.ch/yarr/rd53a/


Procedura di configurazione del chip

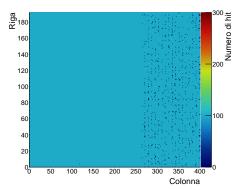
- Software: YARR, versione 1.1.0 (/home/felix/ITk/atlasSW/Yarr_v1.1.0)
- File di connectivity: /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/connectivityLecce/example_rd53a_setup_link1_chipGE.json
- File di configurazione: /home/felix/ITk/atlasSW/Yarr_v1.1.0/con-figs/rd53a_TravellingChip_GE_Trimmed.json
- File .json: /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/


Scan digitale (RD53A - SN: 0x1995)

Mappa degli hit

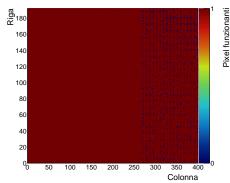
Numero di hit registrati dopo 100 iniezioni digitali per pixel

Mappa dei pixel funzionanti


0: pixel con hit \neq 100

1: pixel con hit = 100

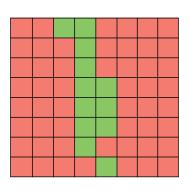
Scan analogico CIRCUITO DI **SCARICA** Mask Segnale DISCR Lettura CSA CIRCUITO DI COMPENSAZIONE INIEZIONE Aggiustamento


Scan analogico (RD53A - SN: 0x1995)

Mappa degli hit

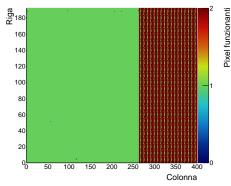
Numero di hit registrati dopo 100 iniezioni analogiche

Mappa dei pixel funzionanti



0: pixel con hit \neq 100

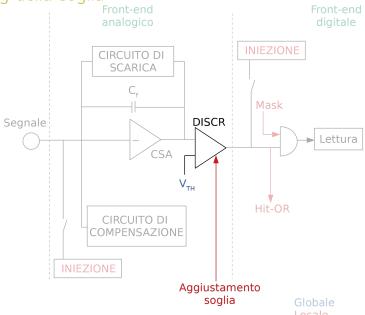
1: pixel con hit = 100


Scan analogico (RD53A - SN: 0x1995)

Maschera differenziale

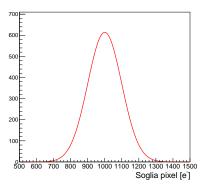
- Pixel con capacità parassite
- Pixel senza capacità parassite

Mappa dei pixel funzionanti

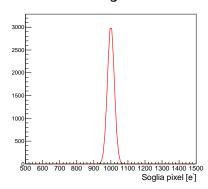


0: pixel abilitati con hit \neq 100

1: pixel abilitati con hit = 100

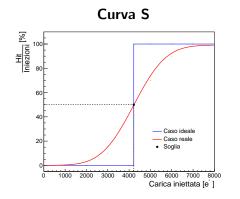

2: pixel disabilitati

Tuning della soglia

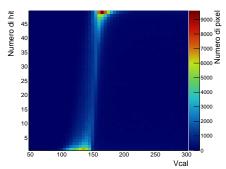


Tuning della soglia

Tuning globale

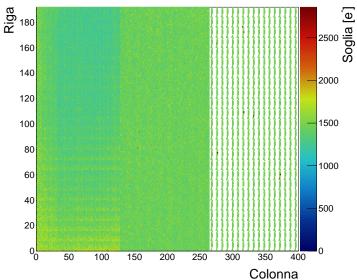


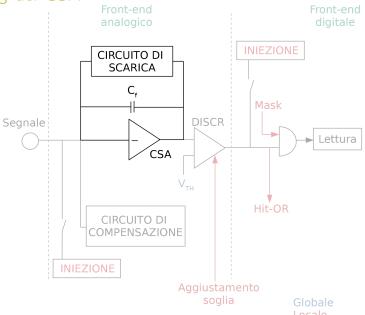
Tuning locale



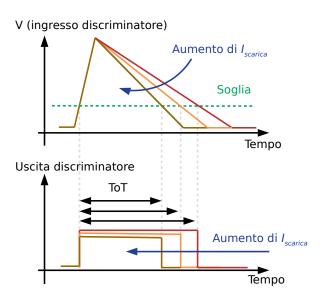
- Soglia target: 1000 e⁻
- Dispersione dovuta a variazioni delle caratteristiche dei transistor

Scan della soglia (RD53A - SN: 0x1995)

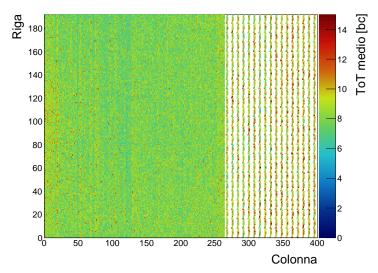

Curva S (intera matrice)


- ullet Carica iniettata $\sim 10 \cdot \text{Vcal [e}^-\text{]}$
- Soglia target: 1500 e⁻

Scan della soglia (RD53A - SN: 0x1995)

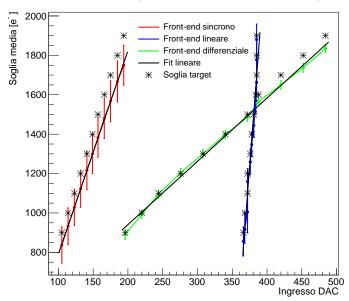


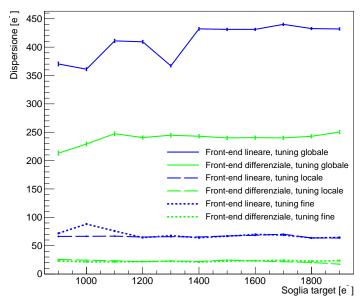
Tuning del CSA



Tuning del CSA

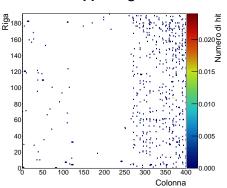
Scan del ToT (RD53A - SN: 0x1995)

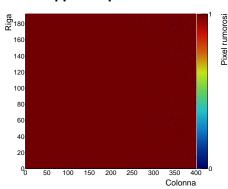

Target @ $10000 e^-$: 8 bc (1 bc = 25 ns)


Indice

- II chip RD53A
- Calibrazione del chip RD53A SN: 0x1995
- Caratterizzazione del chip RD53A SN: 0x1995

Linearità DAC globali (RD53A - SN: 0x1995)


Dispersione soglie (RD53A - SN: 0x1995)

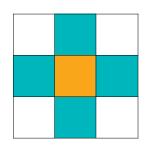

Misura del rumore (RD53A - SN: 0x1995)

- Trigger con frequenza di 5 kHz (no self-trigger) senza iniezione di carica
- Durata scan: 5 minuti, copertura da radiazione luminosa ambientale

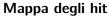
Mappa degli hit

Mappa dei pixel rumorosi

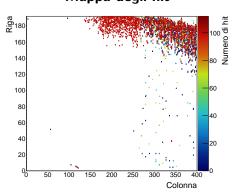
0: pixel con hit/bc $> 10^{-6}$

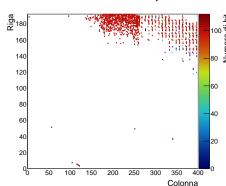

1: pixel con hit/bc $< 10^{-6}$

Sensore: curva I-V


Sensore: integrità dei bump-bond

- Cross-talk: generazione di un hit in un pixel del sensore in corrispondenza di carica rilasciata in quelli adiacenti a causa di capacità parassite tra di essi
- Assenza di cross-talk interpretata come danneggiamento della connessione tra sensore e pixel

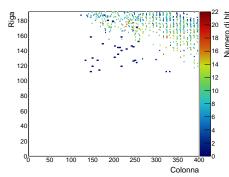



- Pixel in cui avviene l'iniezione di carica
- Pixel in cui si conta il numero di hit

Sensore: integrità dei bump-bond

Mappa degli hit (con maschera differenziale)

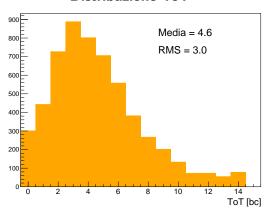
Soglia: 1100 e⁻, $V_{bias} = -2 \text{ V}$


Esposizione ad una sorgente di 90Sr: mappa degli hit

• Sorgente di ⁹⁰Sr:

90
Sr $\rightarrow e^{-} + \overline{\nu}_{e} + ^{90}$ Y
 90 Y $\rightarrow e^{-} + \overline{\nu}_{e} + ^{90}$ Zr

- Soglia: 1100 e⁻
- V_{bias}: −2 V
- Trigger con frequenza di 5 kHz
- Disabilitazione dei pixel rumorosi
- Durata esposizione: 5 minuti
- Numero medio di hit per pixel osservato: 8


Mappa degli hit

Esposizione ad una sorgente di ⁹⁰Sr: distribuzione ToT

- Target @ 10000 e⁻: 8 bc
- Attesa distribuzione con media 8 bc per elettroni che attraversano l'intero spessore del pixel (150 µm)
- Osservata distribuzione con media 4.6 bc

Distribuzione ToT

BACKUP

Controllo dell'alimentazione del chip RD53A

- Accensione: /home/felix/ITk/DCS/scripts/TurnOnPowerSupply.sh
- Spegnimento: /home/felix/ITk/DCS/scripts/TurnOffPowerSupply.sh
- Lettura tensione e corrente: /home/felix/ITk/DCS/scripts/ReadPowerSupply.sh

Procedura di configurazione del chip RD53A

Dalla directory /home/felix/ITk/atlasSW/Yarr_v1.1.0: ./bin/scanConsole -r /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/controller/specCfg.json -c /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/connectivityLecce/example_rd53a_setup_link1_chipGE.json -s seguito dal path del file .json:

- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/std_digitalscan.json -p -m 1
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/std_analogscan.json -p
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/diff_tune_globalthreshold.json -t X -p (X = soglia target in e⁻)
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/diff_tune_pixelthreshold.json -t X -p
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/diff_tune_globalpreamp.json -t Y Z -p (Y = carica in ingresso in e⁻, Z = ToT corrispondente a Y in bc)
- /home/felix/ITk/atlasSW/Yarr v1.1.0/configs/scans/rd53a/diff tune pixelthreshold.json -t X -p
- $\\ \hline \\ \text{$0$} \text{ $/$ home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/lin_tune_globalthreshold.json -t X-p } \\ \\ \text{0} \\ \text{0} \text{$/$ home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/lin_tune_globalthreshold.json -t X-p } \\ \\ \text{0} \\ \text{0} \text{$/$ home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/lin_tune_globalthreshold.json -t X-p } \\ \text{0} \\ \text{0
- home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/lin_tune_pixelthreshold.json -t X -p
- /home/felix/ITk/atlasSW/Yarr v1.1.0/configs/scans/rd53a/lin retune globalthreshold.json -t X -p
- home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/lin_retune_pixelthreshold.json -t X -p

Procedura di configurazione del chip RD53A

- home/felix/ITk/atlasSW/Yarr v1.1.0/configs/scans/rd53a/lin tune globalpreamp.json -t Y Z -p
- home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/lin_retune_pixelthreshold.json -t X -p
- /home/felix/ITk/atlasSW/Yarr v1.1.0/configs/scans/rd53a/syn tune globalthreshold.json -t X -p
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/syn_tune_globalpreamp.json -t Y Z -p
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/syn_tune_globalthreshold.json -t X -p
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/std_thresholdscan_swapped.json -p
- /home/felix/ITk/atlasSW/Yarr v1.1.0/configs/scans/rd53a/std totscan.json -t Y -p
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/std_digitalscan.json -p -m 1
- /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/std_analogscan.json -p

Caratterizzazione del chip RD53A

- Misura del rumore e della radiazione da sorgente radioattiva: ./bin/scanConsole - r /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/controller/specCfg.json -c /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/connectivityLecce/example_rd53a_setup_link1_chipGE.json -s /home/felix/ITk/atlasSW/Yarr-test/Yarr/configs/scans/rd53a/std_noisescan.json
- Per l'alimentazione del sensore: dalla directory /home/felix/ITk/atlasSW/Yarr_v1.1.0/automate/src/: ./keithley-loop-IV X (X = tensione di alimentazione in V)
- Verifica dei bump disconnessi: dalla directory /home/felix/ITk/atlasSW/Yarr_v1.1.0: ./bin/scanConsole -r /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/controller/speeCfg.json -c /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/connectivityLecce/example_rd53a_setup_link1_chipGE.json -s /home/felix/ITk/atlasSW/Yarr_v1.1.0/configs/scans/rd53a/std_discbumpscan.json -p