(some) Theory and simulation related challenges for particle physics (plasma colliders)

J.Vieira, expert panel advanced accelerators

web.ist.utl.pt/jorge.vieira **epp**.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon Portugal

Contributions from theory/simulation talks from previous expert panel town-hall meeting A. Beck, R.A. Fonseca, M. Thévenet, J.-L. Vay

Also contributions from our expert panel on advanced accelerators our community

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	рС	833	3200
polarization	-	80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm / nm	0.010 / 1	0.5 / 5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	-	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	-
Efficiency: drive beam to main beam	%	22	-
Luminosity	10^34 cm-2 s-1	1,5	1,8

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization	-	80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm / nm	0.010 / 1	0.5 / 5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	-	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	-
Efficiency: drive beam to main beam	%	22	-
Luminosity	10^34 cm-2 s-1	1,5	1,8

Parameter	Units	CLIC-like (e-/e+)	ILC-lik
bunch charge	рС	833	3
polarization	-	80% e-	80% e-
initial energy	GeV	175	:
final energy	GeV	190	:
initial relative energy spread	%	0,6	
final relative energy spread	%	0,35	
initial bunch length	μm	70	:
final bunch length	μm	70	:
initial normalized emittance H/V	µm / nm	0.890 / 19	9.9
emittance growth budget H/V	µm / nm	0.010 / 1	0.
final normalized emittance H/V	µm / nm	0.900 / 20	10
bunch separation	ns	0,5	ę
number of bunches per train	-	352	1
rep rate	Hz	50	
beamline length	m	250	(
Efficiency: wall-plug to drive beam	%	58	
Efficiency: drive beam to main beam	%	22	
Luminosity	10^34 cm-2 s-1	1,5	

Parameter	Units	CLIC-like (e-/e+)	ILC-lil
bunch charge	рС	833	3
polarization	-	80% e-	80% e-
initial energy	GeV	175	:
final energy	GeV	190	:
initial relative energy spread	%	0,6	
final relative energy spread	%	0,35	
initial bunch length	μm	70	:
final bunch length	μm	70	:
initial normalized emittance H/V	µm / nm	0.890 / 19	9.
emittance growth budget H/V	µm / nm	0.010 / 1	0.
final normalized emittance H/V	µm / nm	0.900 / 20	10
bunch separation	ns	0,5	
number of bunches per train	-	352	1
rep rate	Hz	50	
beamline length	m	250	(
Efficiency: wall-plug to drive beam	%	58	
Efficiency: drive beam to main beam	%	22	
Luminosity	10^34 cm-2 s-1	1,5	

Parameter	Units	CLIC-like (e-/e+)	ILC-lii
bunch charge	рС	833	3
polarization	-	80% e-	80% e-
initial energy	GeV	175	:
final energy	GeV	190	:
initial relative energy spread	%	0,6	
final relative energy spread	%	0,35	
initial bunch length	μm	70	;
final bunch length	μm	70	:
initial normalized emittance H/V	µm / nm	0.890 / 19	9.
emittance growth budget H/V	µm / nm	0.010 / 1	0.
final normalized emittance H/V	µm / nm	0.900 / 20	10
bunch separation	ns	0,5	:
number of bunches per train	-	352	1
rep rate	Hz	50	
beamline length	m	250	(
Efficiency: wall-plug to drive beam	%	58	
Efficiency: drive beam to main beam	%	22	
Luminosity	10^34 cm-2 s-1	1,5	

Parameter	Units	CLIC-like (e-/e+)	ILC-lii
bunch charge	рС	833	3
polarization	-	80% e-	80% e-
initial energy	GeV	175	:
final energy	GeV	190	:
initial relative energy spread	%	0,6	
final relative energy spread	%	0,35	
initial bunch length	μm	70	;
final bunch length	μm	70	:
initial normalized emittance H/V	µm / nm	0.890 / 19	9.
emittance growth budget H/V	µm / nm	0.010 / 1	0.
final normalized emittance H/V	µm / nm	0.900 / 20	10
bunch separation	ns	0,5	:
number of bunches per train	-	352	1
rep rate	Hz	50	
beamline length	m	250	(
Efficiency: wall-plug to drive beam	%	58	
Efficiency: drive beam to main beam	%	22	
Luminosity	10^34 cm-2 s-1	1,5	

 $E_{\rm accel}$ 100 GeV/m n_0 10^{18} cm^{-3}

	Energy	ϵ_n
$E_{\rm accel}$	15 GeV	10 nm
100 GeV/m		100 nm
n_0	190 GeV	10 nm
10^{18} cm^{-3}		100 nm

	Energy	ϵ_n	$\sigma_{\!\perp}$
$E_{\rm accel}$	15 GeV	10 nm	20 nm
100 GeV/m		100 nm	60 nm
no		10 nm	10 nm
10^{18} cm^{-3}	190 GeV	100 nm	30 nm

Computing requirements

Typical cell sizes in most (*not all!*) published results

- •Longitudinal $\Delta x_{\parallel} \propto \lambda_L$
- •Transverse $\Delta x_{\perp} \propto \lambda_p$

cells (order of magnitude) 1000x100x100

Computing requirements

Typical cell sizes in most (**not all!**) published results

- •Longitudinal $\Delta x_{\parallel} \propto \lambda_L$
- Transverse $\Delta x_{\perp} \propto \lambda_p$

cells (order of magnitude) 1000×100×100

Collider

- •Longitudinal $\Delta x_{\parallel} \propto \lambda_L$
- •Transverse $\Delta x_{\perp} \propto \sigma_{\perp} \propto \lambda_p/100$

Computing requirements

Resources are critical! **Community** based effort!

Typical cell sizes in most (**not all!**) published results

- •Longitudinal $\Delta x_{\parallel} \propto \lambda_L$
- Transverse $\Delta x_{\perp} \propto \lambda_p$

cells (order of magnitude) 1000×100×100

Collider

- •Longitudinal $\Delta x_{\parallel} \propto \lambda_L$
- •Transverse $\Delta x_{\perp} \propto \sigma_{\perp} \propto \lambda_p/100$

Efficiency

Parallel efficiency, domain decomposition, AMR, CPU, GPU, ML/AI, ...

.C

Multi-physics

Hydrodynamics, MHD, radiation reaction, spin, disruption, ...

Courtesy J.-L.Vay

.C

Multi-physics

Hydrodynamics, MHD, radiation reaction, spin, disruption, ...

Figures of merit

Energy	ϵ_n	$\sigma_{\!\perp}$
15 GeV	10 nm	20 nm
	100 nm	60 nm
190 GeV	10 nm	10 nm
	100 nm	30 nm

Figures of merit			
Energy	ϵ_n	$\sigma_{\!\perp}$	σ_{\parallel}
$15 C_{2}V$	10 nm	20 nm	10 <i>u</i> m
15 Gev	100 nm	60 nm	
	10 nm	10 nm	Q
190 GeV	100 nm	30 nm	1 nC

Figures of merit			
Energy	ϵ_n	$\sigma_{\!\perp}$	σ_{\parallel}
$15 C_{2}V$	10 nm	20 nm	10 <i>u</i> m
15 Gev	100 nm	60 nm	
	10 nm	10 nm	Q
190 GeV	100 nm	30 nm	1 nC

Figures of merit			
Energy	ϵ_n	$\sigma_{\!\perp}$	σ_{\parallel}
$15 C_{2}V$	10 nm	20 nm	10 <i>u</i> m
15 Gev	100 nm	60 nm	
	10 nm	10 nm	Q
190 GeV	100 nm	30 nm	1 nC

Extreme conditions

 n_b/n_p 4×10^5 4×10^4 10^{6} 10^{5}

emittance preservation and acceleration under **extreme** witness bunch densities

- electrons
- positrons
- plasma vacuum matching

Positron acceleration

Positron acceleration schemes

Hollow channels, linear/mildly nonlinear regime, doughnut wakefields, ...

Positron acceleration

Positron acceleration schemes

Hollow channels, linear/mildly nonlinear regime, doughnut wakefields, ...

New (?) questions?

Explore positron acceleration under extreme conditions

- Acceleration in linear regime: still possible?
- Ion motion: maybe beneficial for positrons?

Conclusions and outlook

Creative field with tremendous progress in both theory and simulations

Conclusions and outlook

Creative field with tremendous progress in both theory and simulations

Connection with collider physics brings new and exciting fundamental physics questions

Conclusions and outlook

Creative field with tremendous progress in both theory and simulations

Connection with collider physics brings new and exciting fundamental physics questions

Prospects are exciting, and a lot of work is ahead of us to explore all we need for HEP at 100 GeV and beyond.

