

Plans for Positron Acceleration

PWFA Experimental Program at FACET-II is Motivated by Roadmap for Future Colliders Based on Advanced Accelerators

http://science.energy.gov/~/media/ hep/pdf/accelerator-rd-stewardship/ Advanced_Accelerator_Development Strategy_Report.pdf

E. Adli et al., ArXiv 1308.1145 J. P. Delahaye et al., Proceedings of IPAC2014

- Collider concepts assume high degree of symmetry between electron and positrons
- This is not a good assumption
- Planning for FACET-II to offer ability to test concepts in collider relevant regimes

Extending Plasma Acceleration to Positrons is Not Trivial

"Blow-out"

"Suck-in"

- First acceleration of positron beams in plasma
 B. Blue et. al. *Phys. Rev. Lett.* 90 214801 (2003).
- Positron beam transport in plasma
 M. J. Hogan et. al. *Phys. Rev. Lett.* 90 205002 (2003).
- Halo formation due to non-linear fields
 P. Muggli et. al. *Phys. Rev. Lett.* 101 055001 (2008).
- Experiments at SLAC FFTB in 2003 showed that the positron beam was distorted after passing through a low density plasma

M.J. Hogan – EAAC2021 FACET-II Positron Plans, September 22, 2021

FACET Provided Single & Double Positron Bunches With Higher Intensity to Probe Higher Density Plasmas

Multi-GeV Acceleration in Non-linear wakes

- New self-loaded regime of PWFA
- Energy gain 4 GeV in 1.3 meters
- Low divergence, no halo

Hollow Channel Plasma Wakefield Acceleration

- Engineer Plasma to Control the Fields
- No focusing on axis
- Measured transverse and longitudinal wakefields

Quasi-linear Wakefield Acceleration

- > 1 GeV energy gain in 1.3 meters
- Of interest to both the PWFA and LWFA for linear collider applications
- This technique can be used to accelerate a positron witness beam in electron wake

Gessner et al., Nature Communications 2016 Lindstrom et al., Phys. Rev. Lett. 2018

Doche et al., Scientific Reports 2017

20 19

21

E (GeV)

SLAC

2017 FACET-II Science Workshop

<u>https://conf.slac.stanford.edu/facet-2-2017/agenda</u>

2018 ALEGRO Positron Acceleration in Plasma Mini-Workshop

<u>https://indico.cern.ch/event/702515/</u>

2019 FACET-II Science Workshop including Glen's overview of anticipated positron capabilities at FACET-II:

 <u>https://conf.slac.stanford.edu/facet-2-2019/sites/</u> <u>facet-2-2019.conf.slac.stanford.edu/files/basic-page-docs/Glen-</u> <u>FACET2_positrons.pdf</u>

2019 EAAC (just search for positron) good overview by Carl:

 https://agenda.infn.it/event/17304/contributions/97652/ attachments/66657/81610/EAAC2019_Positrons_CAL.pdf

Positron Generation and Trapping without External Source

- Use a pair of electron beams to generate positrons in a tungsten foil at plasma entrance
- Some positrons will get trapped and accelerated in the electron-driven wake.
- E-303 experiment: P.I.
 K. Marsh, UCLA.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 091301 (2019)

Positron beam extraction from an electron-beam-driven plasma wakefield accelerator

H. Fujii[®],¹ K. A. Marsh,¹ W. An,¹ S. Corde[®],² M. J. Hogan,³ V. Yakimenko,³ and C. Joshi¹ ¹University of California, Los Angeles, Los Angeles, California 90095, USA ²LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France ³SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

'Simple' way to probe volume of the region that is accelerating and focussing but cannot access collider level parameters

FACET-II Layout and Beams

A plan has been developed to restore positron capability

- Simultaneous delivery of up to 1nC e+ & 2nC e- to S20 IP region
- Expected performance modeled with particle tracking, including dynamic errors
- More details in TDR Ch. 8

Positron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	1	0.7-2
Repetition Rate [Hz]	5	1-5
Norm. Emittance γε _{x,y} at S19	10, 10	6-20
Spot Size at IP σ _{x,y} [μm]	16, 16	5-20
Min. Bunch Length σ_z (rms)	16	8
Max. Peak current I _{pk} [kA]	6	12

Will be Possible to Study Positron PWFA in Electron Wakes

Positrons can be restored to Sector 20 by utilizing existing S19 positron source with a ~4 nC electron driver pulse

Hardware required to restore positrons:

- New BC14 chicane section
- 335 MeV booster Linac in return line
- New compact DR in Sector 10
- New beamlines to extract beam from return line into DR, extract beam from DR and extract, compress & inject into BC11

Simultaneous e- e+ delivery (dz +/- 600 µm) made possible by adding BC20P beamline

335 MeV Positron Damping Ring in Sector 10

SLAC

2.9 m diameter ring

- Vertical injection & extraction
- SLC kickers & RF, new septa
- New combined-function arc magnet designs.

M.J. Hogan – EAAC2021 FACET-II Positron Plans, September 22, 2021

Collider Designs Require New Ideas for Positron PWFA

Beam Driven Plasma R&D 10 Year Roadmap								
2016	2018	2020	2022	2024	2026			
PWFA-LC Concept Development and Parameter Studies								
Beam Dynamics and Tolerance Studies								
Positron Acceleration								
FACET	FACET-II Phase 2: Positrons							
Simulate, Test and Identify the Optimal Configuration for Positron PWFA								
Present ('New	Regime' only)		G	Goals				
4GeV		100pC, >1GeV @ >1GeV/m, dE/E < 5%, Emittance Preserved in at least one regime: 'New Regime' seeded with two bunches Hollow Channel Plamsas Quasi non-linear						
Q ~ 100 pC								
3 GeV/m								
$\Delta E/E \sim 2\%$								
ε not measured								
Plasma Source Development								

Goals

Tailored density ramps for beam matching and emittance preservation

Uniform, hollow and near-hollow transverse density profiles

Accelerating region density adjustable from 1015 - 1017 e-/cm3

Accelerating length > 1m

Scalable to high repetition rate and high power dissipation

Advanced Accelerator Development Strategy Report

- Transversely tailored plasmas
- Transversely tailored drivers
- Long term evolution of beams/plasmas into exotic equilibrium

Transversely Tailored Plasmas

SLAC

- Changing the shape of the ionized plasma region modifies the trajectories of plasma electrons in the wake.
- This leads to an elongated region in the back of the wake where positron bunches are focused and accelerated.
- E-333 experiment: DESY/LBNL/SLAC collaboration

<u>S. Diederichs et. al. *Phys. Rev.*</u> Accel. Beams **22** 081301 (2019) <u>S. Diederichs et. al. *Phys. Rev.*</u> <u>Accel. Beams **23** 121301 (2020)</u>

Transversely Tailored Drivers a.k.a. Wake Inversion

З

J. Vieira, et al. PRL 112 215001 (2014) N. Jain et al. PRL 115 195001(2015)

Certainly a challenge for the accelerator physicists

 Optimizations are possible trading efficiency, energy spread and emittance

- Linear focusing force for e⁺
- Width of linear focusing region on the order of the skin depth
- Focusing varies but may not compromise divergence/emittance growth

SLAC

e+ can accelerate at the front

- Beam loading is possible
- Energy spread growth can be controlled

M.J. Hogan – EAAC2021 FACET-II Positron Plans, September 22, 2021

Recent Proposals with New Equilibrium Conditions

SLAC

"Stable Positron Acceleration Mode in Hollow Plasma Channel Driven by an Asymmetric Beam"

M.J. Hogan – EAAC2021 FACET-II Positron Plans, September 22, 2021

"Electron and positron acceleration in self-generated, thin, warm hollow plasma channels." E-337

T. Silva *et al.* (IST) Phys. Rev. Lett. 127, 104801 (2021)

- A plan has been developed to restore (and improve) our capabilities to test concepts for positron PWFA at FACET-II
- With positron upgrade FACET-II will be first facility capable of studying electron-driven, positron witness PWFA
- FACET-II can explore issues on beam loading and beam quality that were only touched upon at FACET (C. S. Hue, G. Cao, S. Corde et. al. https://arxiv.org/pdf/2107.01145.pdf)
- With a decision in 2022 may be ready in 2025
- Requires coordination with ongoing FACET-II electron programs, LCLS, LCLS-II, LCLS-II HE and our sponsors (DOE HEP)

Help maintain the momentum and submit new ideas at: https://facet.slac.stanford.edu/proposals