Expert Panel High Gradient – Plasma & Laser Accelerators

Progress report to LDG

R. Assmann & E. Gschwendtner for the expert panel

21 Sep 2021

Reminder: Setup and Persons Involved, Mandate

Expert Panel "High Gradient:

Plasma and Laser Accelerators"

Follow-up Panel to Europ. Strategy for Particle Physics

Panel proposes roadmap for use in Particle Physcis

Panel members:

Chair: Ralph Assmann (DESY/INFN)

Deputy Chair: Edda Gschwendtner (CERN)

Kevin Cassou (IN2P3/IJCLab), Sebastien Corde (IP Paris), Laura Corner (Liverpool), Brigitte Cros (CNRS UPSay), Massimo Ferarrio (INFN), Simon Hooker (Oxford), Rasmus Ischebeck (PSI), Andrea Latina (CERN), Olle Lundh (Lund), Patric Muggli (MPI Munich), Phi Nghiem (CEA/IRFU), Jens Osterhoff (DESY), Tor Raubenheimer (SLAC), Arnd Specka (IN2PR/LLR), Jorge Vieira (IST), Matthew Wing (UCL).

Panel associated members:

Cameron Geddes (LBNL), Mark Hogan (SLAC)), Wei Lu (Tsinghua U.), Pietro Musumeci (UCLA)

Mandate:

- Develop a long-term roadmap for the next 30 years towards a HEP collider or other HEP applications.
- Develop milestones for the next 10 years taking explicitly into account the plans and needs in related scientific fields as well as the capabilities and interests of the stakeholders.
- Establish key R&D needs matched to the existing and planned R&D facilities.
- Give options and scenarios for European activity level and investment.
- Define deliverables until the next European strategy process in 2026, which allow deciding on the continuation of this R&D line for HEP.

Elaborate **consultation process** with 231 registered participants, 3 townhall meetings, > 60 talks and inputs.

Expert Panel Assessment General considerations

- Advanced accelerators have made **important progress in demonstrating key aspects** of those technologies: energy and quality for laser/electron/proton driven
- **Rapid progress** in underlying technologies, e.g. lasers, feedbacks, nano-control, manufacturing, ...
- Feasibility of a collider remains to be proven:
 - E.g. scheme for positrons in plasma accelerators still to be demonstrated on paper.
 - Staging designs for high energy remain to be calculated in detail and with all elements, including tolerances, length and cost scaling.
 - Repetition rate issues and efficiency approach to be investigated in detail.
- Therefore: **1st coordinated study to address feasibility** required (layout, theory and simulation). Complemented by **selected technical milestones** of relevance.

STRUCTURE

HIGH GRADIENT PLASMA AND LASER ACCELERATORS

Accelerator R&D Roadmap Pillars

FEASIBILITY, PRE-CDR STUDY

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis
Concept: Comparative paper study (main concepts included)
Milestones: Report high energy e⁻ and e⁺ linac module case studies, report physics case(s)
Deliverable: Feasibility and pre-CDR report in 2026 for European, national decision makers

TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications **Concept**: Prioritised list of R&D that can be performed at existing, planned R&D infrastructures

in national, European, international landscape

Milestones: HQ e⁻ beam by 2026, HQ e⁺ beam by 2032, 15 kHz high eff. beam and power sources by 2037 (sustainability)

Deliverable: Technical readiness level (TRL) report in 2026 for European, national decision makers

INTEGRATION & OUTREACH

Synergy and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EuPRAXIA, ...)

Access: Establishing framework for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry

Training: Involvement and education of next generation engineers and scientists

Common coordinated pre-CDR study for particle physics (2 MCHF/year personnel funding, 2022 - 2026, 5 years)

2022 - Setup of simulation tools for	Electron beam physics and simulation models with certain
electron case studies (multi-stage)	approximations for 2 or more stages, all interconnections, in/out-
See talk Jorge Vieira	coupling, for 15 GeV and 190 GeV, including synchrotron radiation and collective effects
2023 - Setup of simulation tools for	Positron beam physics and simulation models with certain
positron case studies (multi-stage)	approximations for 2 or more stages, all interconnections, in/out-
See talk Jorge Vieira	coupling, for 15 GeV and 190 GeV, including synchrotron radiation and collective effects
2024 - DELIVERABLE: Report electron	Multi-stage electron accelerator from 175 GeV to 190 GeV,
high energy case study	including full lattice, in/out-coupling, all magnetic elements,
	correctors, diagnostics, collective effects, synchrotron radiation,
See talk Edda Gschwendtner	estimate of realistic performance , estimate of realistic footprint,
	estimate of realistic benefits in cost and size, understanding of
	scaling with beam energy for different technologies (laser-driven,
	electron-driven, proton-driven, DLA/THz).

Common coordinated pre-CDR study for particle physics (2 MCHF/year personnel funding, 2022 - 2026, 5 years)

2024 - DELIVERABLE: Physics Case of	Report from common study group with particle physicists on physics	
an Advanced Collider	cases of interest at the energy frontier (e+e- collider, gg) and at lowe	
	beam energies (e- g collider, dark matter search,)	
2025 - DELIVERABLE: Report positron	Multi-stage positron accelerator from 175 GeV to 190 GeV,	
high energy case study	including full lattice, in/out-coupling, all magnetic elements,	
	correctors, diagnostics, collective effects, synchrotron radiation,	
See talk Edda Gschwendtner	estimate of realistic performance , estimate of realistic footprint,	
	estimate of realistic benefits in cost and size, understanding of	
	scaling with beam energy for different technologies (laser-driven,	
	electron-driven, proton-driven, DLA/THz).	
2025 - DELIVERABLE: Report low	Assessing the low energy regime around 15-50 GeV, achievable	
energy study cases for electrons and	performance, foot print and cost, schemes and designs for first	
positrons	particle physics experiments with novel accelerators, needed R&D	
	demonstration topics for low energy design and needed test facilities	
2026 - Study of spin preservation and	Assessment of IP issues in an advanced collider with ultra-short	
beam- disruption mitigation strategies for a plasma-based collider	bunches, benefits for disruption, possibility for spin polarized beams	

Common coordinated pre-CDR study for particle physics (2 MCHF/year personnel funding, 2022 - 2026, 5 years)

2026 - DELIVERABLE: Pre-CDR and Collider Feasibility Report	Input for decision point of European strategy, brings together work/reports achieved (see earlier).
	Complemented by report on Technical Readiness Levels (TRL report) for collider components and systems.
	Preliminary physics case report.
	Comparison of performance and readiness for different technologies (laser, electron, proton driven plasma, DLA/THz) for a possible focus on the most promising path for particle physics.
	Design of a staging experiment. Report on intermediate steps and need for a dedicated facility.
	Project plan for a CDR of an advanced collider.

STRUCTURE

HIGH GRADIENT PLASMA AND LASER ACCELERATORS

Accelerator R&D Roadmap Pillars

FEASIBILITY, PRE-CDR STUDY

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis
Concept: Comparative paper study (main concepts included)
Milestones: Report high energy e⁻ and e⁺ linac module case studies, report physics case(s)
Deliverable: Feasibility and pre-CDR report in 2026 for European, national decision makers

TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications **Concept**: Prioritised list of R&D that can be performed at existing, planned R&D infrastructures

in national, European, international landscape

Milestones: HQ e⁻ beam by 2026, HQ e⁺ beam by 2032, 15 kHz high eff. beam and power sources by 2037 (sustainability)

Deliverable: Technical readiness level (TRL) report in 2026 for European, national decision makers

INTEGRATION & OUTREACH

Synergy and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EuPRAXIA, ...)

Access: Establishing framework for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry

Training: Involvement and education of next generation engineers and scientists

- 1.1 Findings: Milestones and Deliverables 2021 2024
- 2021: High quality beams: electron-driven plasma accelerator tion of FEL-SASE and seeded exponential growth at 82
 High-quality beams: Laser-driven plasma accelerator Demonstration of FEL-SASE at SIOM [2]
- 2022: Numerical and Theoretical Tools → Setup of simula stages) with certain approximations
- 2023: High-quality beams: Laser-driven plasma accelerator-b sion laser-driven plasma FEL site EuPRAXIA
 - Positron technical demonstrations → Demonstration tance, 2% energy spread) positron beam from a plasma MeV level.
 - Numerical and Theoretical Tools → Setup of simula stages) with certain approximations
 - Hybrid laser-beam driver schemes: demonstration, stal schemes → Realization of tuneable PWFA internal i plasma photoguns
 - Dielectric accelerator module with high quality beam f MeV beam
- 2024: Dielectric accelerator module with high quality beam for tion code capable of simulating a billion accelerating ce
 - Hybrid laser-beam driver schemes: demonstration, stal schemes → Demonstration of emittance and brightne: compared to the initial LWFA output
 - High-quality LWFA injector \longrightarrow Models for nC-level, \Bbbk validated by simulations
 - Advanced plasma photoguns with ultra-low emittance normalized emittance
 - High quality beams: electron-driven plasma accelerato tion of FEL saturation at short wavelength (<830 nm)
 - Polarized electrons \longrightarrow Demonstration of polarized ele ization fraction
 - Plasma lens R&D → Demonstration of focusing effe GeV energy range
- 2024: DELIVERABLE → Report electron high energy cas tron accelerator, cost and footprint) and physics case

- 1.2 Findings: Milestones and Deliverables 2025 2026
- 2025: Plasma lens R&D \longrightarrow Development and demonstrativity with plasma lenses
 - High quality beams: electron-driven plasma accelerate Technical Design Report ready
 - High-quality LWFA injector → Experiments, optimi repetition rate at existing facilities
 - Dielectric accelerator module with high quality beam 1 for applications outside HEP and design and simulate
- 2026: Plasma lens R&D \rightarrow Integration of plasma lenses in
- strategies for a plasma-based collider
 High average power, high efficiency laser drivers and
- Ingli arctage power, ingli entered fast envers and laser for driving a high repetition rate test beamline fa
 Positron technical demonstrations → Demonstrati
- Positron technical demonstrations → Demonstrations plasma wake-field at the 1 GeV level
- Development of plasma sources for high-repetition ra sential physics questions, e.g. wakefield process effici
- Dielectric accelerator module with high quality beam late a linear collider at the energy frontier
- High-quality beams: Laser-driven plasma accelerator PRAXIA Technical Design Report ready
- Proton-driven plasma wakefield acceleration: demons trol, scalability → Until 2026 AWAKE plans to den process with an electron bunch and optimize the proces density step to accelerate electrons to multi-GeV energy
- High transformer ratio PWFA for high efficiency and tion over many betatron periods in a plasma module w drive energy), high total efficiency (30% driver to witr the 1 µm level), and narrow energy spread (0.1%)
- 2026: DELIVERABLE → Pre-CDR and Collider Feasibil by report on Technical Readiness Levels (TRL report) to next Update of European Strategy for Particle Pl

- 1. High-gradient Plasma and Laser Accelerators
- 1.3 Findings: Milestones and Deliverables 2027 2030
- 2027: Hybrid laser-beam driver schemes: demonstration, sta schemes → Demonstration of advanced sources such
 - Advanced plasma photoguns with ultra-low emittance high-charge (100's of pC to nC, moderate to extreme c normalized emittance
 - High-quality LWFA injector \longrightarrow Experimental demon $f_{rep} \leq 100 \text{ Hz}$
 - Staging of electron plasma accelerators including in- ar staging at 5 GeV. Extend the design to its use at 50 G plasma lenses
 - Staging of electron plasma accelerators including inplasma lenses for the high energy beams of 50 GeV an
- 2028: Advanced plasma photoguns with ultra-low emittance low emittance electron beams from plasma photocatho
- Dielectric accelerator module with high quality beam and feedbacks for DLA: measurement of orbit and prol
- Numerical and Theoretical Tools → Demonstration stable and efficient numerical models
- 2029: High quality beams: electron-driven plasma accelera beam-driven EuPRAXIA facility at Frascati in operatic
- 2030: High average power, high efficiency laser drivers and wavelength (few kW) [3]: pulse energy 50-100J, repeti energy stability (RMS) 0.6–1%, pointing stability (RM
 - Dielectric accelerator module with high quality beam for laser sources, alignment of structures and develop a con-
 - High-quality beams: Laser-driven plasma accelerate demonstration fully saturated FEL at LUX. EuPRAXI/
 - Proton-driven plasma wakefield acceleration: demonst trol, scalability → In the next 10 years AWAKE ai electron witness bunch to 10 GeV in 10m with contro the 10 mm-mrad level and percent energy spread, to < long, and to demonstrate acceleration in a scalable pla 100 GeV energies
 - Plasma lens $R\&D\longrightarrow Demonstration$ of a transversely rection
 - High transformer ratio PWFA for high efficiency and l transformer ratio while mitigating beam-plasma instability
 - Numerical and Theoretical Tools \longrightarrow Start-to-end simu

1.4 Findings: Milestones and Deliverables 2030 - 2037

- 2030+: Proton-driven plasma wakefield acceleration: demonst trol, scalability → Starting in 2030, by the successful ready for first high-energy physics applications [5–7]. tion technology could be used in fixed target experime future electron-proton or electron-ion colliders at very acceptable
- 2031: Polarized electrons ----- Increase of the polarization fra-
- 2032: High-quality LWFA injector \longrightarrow Experimental demor $f_{rep}>1~{\rm kHz}$
 - High average power, high efficiency laser drivers and ducing multi-GeV beam energies at kHz rates
- 2034: Staging of electron plasma accelerators including in- and test complete transfer lines at 50 GeV and 180 GeV
- 2035: High average power, high efficiency laser drivers and efficient laser for HEP collider stages
 - Development of plasma sources for high-repetition rate, technology as close as possible towards that working µ for iterative plasma-source development will be requira repetition-rate plasma accelerator research. Each iterat with sustained operation at a repetition rate conducive w e.g. 10 kHz.
 - Development of plasma sources for high-repetition rate, per stage are pushed into the relevant multi-10 to 10 consistent with the outcome of the proposed conceptual
- 2037: High-quality LWFA injector \longrightarrow Experimental demon $f_{rep} > 10 \text{ kHz}$

Input and findings: **<u>56 proposed milestones and deliverables for R&D until 2037</u>**. To be discussed further and prioritized in next step of the roadmap process.

2

3

9

5

10.	Criterion	Sub-criterion Evaluation	Evaluation points
1	Impact on Future Particle Physics Infrastructures		0 - 6
а		Importance for achieving required performance parameters (integrated luminosity, background,)	0, 1, 2
b		Importance for removing potential road-blocks, building intermediate demonstration steps	0, 1, 2
С		Importance for sustainability (energy consumption, facility size, environmental impact,)	0, 1, 2
2	Feasibility of the proposed R&D project		0 - 4
а		Scientific & technical readiness	0, 1, 2
b		Existing funding support	0, 1, 2
3	Strategic importance		0 - 6
а		Relevance for next European Strategy decisions	0, 2, 4
b		Importance for national, regional and European strategies	0, 1, 2

Expert Panel Identified 9 Draft Technical Milestones until Next Strategy Update in 2027

- Panel used the input received (many thanks again), evaluation criteria and expert assessment
- We tried to identify milestones of importance for particle physics aimed to address needs and to build trust
- Milestones should be **detailed**, **realistic and achievable by 2026**
- Milestones should convince particle physics in 2027 that our field achieved the agreed goals and is on a good track towards demonstrating a collider and intermediate particle physics experiments
- Will present **draft milestones** in the following: comments and suggestion for final process are invited

Particle Physics Interest – See Collider Goals

provide e⁻ and e⁺ beams in the TeV energy regime and produce > 10³⁴ cm⁻² s⁻¹ luminosity

Parameter	Unit	PWFA	LWFA	DLA
Bunch charge	nC	1.6	0.64	4.8×10^{-6}
Number of bunches per train		1	1	159
Repetition rate of train	kHz	15	15	20,000
Convoluted normalized emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm-rad	592	100	0.1
Beam power at 5 GeV	kW	120	48	76
Beam power at 190 GeV	kW	4,560	1,824	2,900
Beam power at 1 TeV	kW	24,000	9,600	15,264
Relative energy spread	%		≤ 0.35	8
Polarization	%		80 (for e	_)
Efficiency wall-plug to beam (includes drivers)	%		>10	
Luminosity regime (simple scaled calculation)	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.1	1.0	1.9

How and when can we arrive at readiness for for high energy particle physics?

from expert panel interim report

Milestones Plasma Beam Sources (towards collider needs)

Торіс	Funding (material budget)	Needed funding	Milestones to be achieved by 2026	Far term goal
Compact, stable electron beam source for plasma accelerators (scalable to collider rep rate of 15 kHz)			Electron beam with 50-250 MeV, 10-100 Hz, sub-micron emittance, 30-100 pC	15 kHz, >500 pC, <100nm emittance, fs bunch
Compact, stable positron beam source for plasma accelerators (possibly scalable to collider rep rate of 15 kHz) See talk Gianluca Sarri			Positron beam with 10 MeV, 5-10 micron emittance, 4% energy spread, 1 pC	15 kHz, >500 pC, <100nm emittance, fs bunch

Milestones Plasma Accelerator Module (towards collider needs)

Торіс	Funding (material budget)	Needed funding	Milestones to be achieved by 2026	Far term goal
High repetition rate plasma accelerator module (scalable to collider rep rate of 15 kHz)			At least 1 kHz characterized, robust lifetime (>1e9 shots), only plasma cell, w/o full rep rate beam test, include cooling - power handling assessment	15 kHz repetition rate
High efficiency, electron-driven plasma accelerator module (scalable to 50% efficiency in energy transfer)			efficiency PWFA module, excited by a train of drivers	50% transfer efficiency from stored energy beam driver to stored energy beam witness
High charge, high quality plasma accelerator module, driven by laser pulses (scalable to 1 nC)			sub % energy spread, micron	accelerator module with 1 nC high quality beam (outcome for the sector of the sector o
Scalable plasma source (rowards several metres length)			51 51	10s to 100s metres of plasma source

Milestone Plasma Laser Driver (towards collider needs)

Торіс	Funding (material budget)	Milestones to be achieved by 2026	Far term goal
High repetition rate, high peak power laser		Demonstration of kW average power (e.g. 100Hz, 10J, <100fs or 1kHz, 1J, <100fs or another combination/scheme) Ti:sapp laser pulse	15 kHz rep rate, >100 Tera- Watt, 30% wall plug efficiency

Milestone Plasma Spin Polarization (towards collider needs)

Торіс	Funding (material budget)	Milestones to be achieved by 2026	Far term goal
Spin polarized beams for a plasma-based collider (proof of principle)		Demonstration of polarized electron beams from plasma with 10-20% polarization fraction	Polarization 85%

Milestone DLA/THz Accelerator (towards collider needs)

Торіс	Funding (material budget)	Needed funding	Milestones to be achieved by 2026	Far term goal
Scaling of DLA/THz accelerators for high energy			increased acceleration length	massively scalable many stage (1e6) design printed on a chip

Complemented by US Programs

Facility or Project	Funding (material budget, maybe plus pre- invest)	Milestones that might be achieved by <mark>2027</mark> , in time for next European strategy update (relevant for PP)	Milestones that might be achieved beyond 2027 (relevant for PP)
BELLA (LBNL, US)		Multi-GeV electron staging of two LPA modules with high coupling efficiency and emittance preservation; 10 GeV high-quality electron beams from a single stage; high brightness	High efficiency multi-kHz lasers at the J level and beyond; operation of a user facility based on multi-kHz LPA;
		electron beams from laser-triggered injection; active feedback stabilization of LPA with machine learning/AI techniques;	R&D to further improve electron beam quality and stability from LPAs;
		high efficiency multi-kHz lasers to the few hundred mJ level; studies of positron capture and acceleration in plasmas; demonstration of LPA-driven light sources (XUV FEL, gamma-ray Thomson source);	positron acceleration and staging in plasmas; science experiments using LPA-driven sources of particles and photons; integrated design studies of
		conceptual design studies of a plasma-based colliders.	plasma collider.
FACET-II (SLAC, US)		Single plasma stage with combined parameters: 10 GeV energy gain of witness bunch in one meter plasma, normalized emittance preservation at few micron level, percent level energy spread and >30% overall energy transfer from drive to witness bunch;	Commissioning of facility upgrades that deliver 10 GeV electrons and positrons to the experimental area within one plasma period for studies of
See talk Hogan fo		Development of ultra-high brightness plasma-based injector with 10's nm emittance as proxy for collider level emittance beams; characterize mechanisms for emittance growth in PWFA and demonstrate mitigations; measurement of plasma target recovery time to inform maximum repetition rate in collider designs; development of single shot ML/AI virtual diagnostics for extreme beams;	electron-driven plasma acceleration of positrons
		construction of facility upgrade to deliver 10GeV positrons and electrons to experimental area	

Complemented by Milestones in **Ongoing Projects** aimed at other applications (synergy) and funded from other science fields

Facility or Project	Funding (material budget, maybe plus pre-invest)	Milestones that might be achieved by 2027 , in time for next European strategy update (relevant for PP)	Milestones that might be achieved beyond 2027 (relevant for PP)
APOLLON (France)	60-100 M€	Feasibility study of LWFA electron source at 100pC level , tunable energy range up to GeV, physics study of positron source from LWFA electrons	none scheduled [potential for demonstration of 10 GeV LWF acceleration module, and 2 stage multi-GeV experiment, effective implementation is limited by insufficient laser beam availability for this type of program]
AWAKE (CERN)		Demonstrate the seeding of the self- modulation process with an electron bunch. Optimize the process of generation of wakefields using a plasma density step to maintain large wakefields at the GV/m level and accelerate electrons to multi-GeV energies.	Demonstrate the acceleration of an electron witness bunch to 10GeV in 10m with control of the incoming normalized emittance at the 10mm-mrad level and percent energy spread. Develop scalable plasma sources 50–100 m long, and demonstrate acceleration in a scalable plasma source (helicon or discharge) to 50 to 100 GeV energies.
EuPRAXIA (European, ESFRI project)	569 M€ (110 M€ secured)	TDR for plasma electron accelerator, FEL and positron user facility. Report from EU funded preparatory phase project (laser-based site, legal model, financial model, access rules, innovation model).	2029: Electron beam-driven EuPRAXIA FEL at Frascati in operation with users. 2030: EuPRAXIA laser-driven facility operates at several GeV with users. EuPRAXIA laser at 800nm wavelength (few kW) [3]: pulse energy 50- 100J, repetition rate 20-100Hz, pulse duration 50-60fs, energy stability (RMS) 0.6–1%, pointing stability (RMS) 0.1 µrad. Two stage, 5 GeV HQ e- bunch, FEL operation.

Complemented by Milestones in **Ongoing Projects**

aimed at other applications (synergy) and funded from other science fields

Facility or Project	Funding (material budget, maybe plus pre- invest)		Milestones that might be achieved beyond 2027 (relevant for PP)
SPARC-LAB (Italy)	secured)		To be defined in the framework of EuPRAXIA@SPARC_LAB collaboration
CLARA (UK)	£33.4 M (£27.9 M secured)	2023: CLARA Phase 2 + FEBE beamline construction completed.	
`(8.45M€1		phase 1 : high quality laser-plasma electron injector for staging , 10Hz, 10-50pC, 150-250MeV, ≤1um emn, conceptual design study for 1 stage > 1 GeV, preparing post 2027	phase 2 : laser driven staging at GeV level, 10Hz level depending of budget possibilty.

Complemented by Milestones in Ongoing Projects

aimed at other applications (synergy) and funded from other science fields

Facility or Project	Funding (material budget, maybe plus pre- invest)	Milestones that might be achieved by 2027, in time for next European strategy update (relevant for PP)	Milestones that might be achieved beyond 2027 (relevant for PP)
DESY-KALDERA		kW-average power drive laser (1J@1kHz) for LPA; application-	
(Germany)		ready LPA injectior: GeV-scale energy, sub-percent energy spread, kHz level electron beams; pilot-application soft-X-ray FEL; active feedback/feedforward stabilization (including machine learning techniques)	
DESY- FLASHForward (Germany)		Single, beam-driven plasma-booster stage with beam-quaity preservation at 0.1% energy spread, 2 µm norm. emittance, 40% overall efficiency at the 1 to 2 GeV energy level and 100 pC witness charge (FEL quality); exploration of plasma physics for the kHz to GHz repetition rate regime; development of high-average power plasma sources; active feedback / feedforward stabilization (including machine learning techniques)	Booster stage average power extended to 10 kW level drive beam in ILC-like bunch pattern; application as FEL booster module for FLASH to extend photon science reach
DESY-PETRA-IV Plasma injector (The Moon Shot) (Germany)			6 GeV LPA PETRA-IV injector with sub-1% energy bandwidth-jitter- envelope, 24/7 operation, and up to 3.2 nC / s charge delivery
DESY-The Mars Shot (Germany)			~10 stage , self-stabilized, scalable plasma accelerator in the 10 - 20 GeV range to drive a hard X-ray FEL and LUXE-style nonlinear QED studies

Complemented by Milestones in **Ongoing Projects** aimed at other applications (synergy) and funded from other science fields

Facility or Project	Funding (material budget, maybe plus pre- invest)	s that might be achieved by <mark>2027</mark> , in time for next European strategy levant for PP)	Milestones that might be achieved beyond 2027 (relevant for PP)	
ELI (European)				
EPAC (UK)				
HZDR				
(Germany)		Still collecting input		
CLEAR (CERN)		Still Concerne	to if VOU	
CALA (Germany)		Please contact us for EXCEL templa		
SCAPA (UK)		Please contact us for Excellent want to add a relevant facil	ity	
		want to add		
Your (the missing facility)				

Conclusion

- We presented the **draft structure of our roadmap** "high gradient plasma and laser accelerators" for particle physics
- Highest priority: **Coordinated feasibility study for high energy physics** quite some paper work to be done (minimum requirement: it must work on paper and in simulation).
 - This must be an international, common effort with US and Asia. Report by 2027.
- Complemented by:
 - Nine detailed technical R&D milestones to be achieved by 2027, in time for the next European stratgey.
 - **US program** with additional (complementary) milestones.
 - Milestones in **ongoing advanced accelerator projects and/or facilities**.
- Here: only quick run through (apologies): → Edda will give some detail on some of our roadmap components.

Thank you for your attention!