

5TH EUROPEAN ADVANCED ACCELERATOR CONCEPTS WORKSHOP
LNF-INFN | 22 SEPTEMBER 2021 | ZAHRA M. CHITGAR - JÜLICH SUPERCOMPUTING CENTRE (JSC)

CONTENTS

- Introduction and Motivation
- Basics of Laser-driven Radiation
- Nonlinear Fluid Model
- Optical Control of Laser-driven Radiation sources:
- Circularly Polarized High Harmonic Generation

Chitgar, Zahra M., et al. "Theory of circularly polarized harmonic generation using bi-colour lasers in underdense plasmas" Plasma Phys. Control. Fusion 63 (2021): 035023.

- Relativistic Electron Oscillations: Betatron Radiation in Tandem pulse scheme

Chitgar, Zahra M., et al. "Electron self-injection threshold for the tandem-pulse laser wakefield accelerator." Physics of plasmas 27.2 (2020): 023106.

INTRODUCTION AND MOTIVATION

Ultra-short laser pulses

Wish list characteristics of a laser-driven radiation source:

- High flux
- Small energy bandwidth
- Low divergence
- Small emittance
- Short duration

Simulation of Laser-driven Radiation

Enhancement of laser intensities, high acceleration gradient ($1 \mathrm{GeV} / \mathrm{m}$), high repetition rate

Resolving a 10 keV photon simulation resolution should be at least $0.01 \mathrm{~nm} \rightarrow$ Computationally very expensive

Existing Alternative: Calculating Far-field radiation based on the electron trajectory.

Calculating near-field radiation by solving Maxwell's equation for electron trajectories.

INTRODUCTION AND MOTIVATION

Ultra-short laser pulses

Wish list characteristics of a laser-driven radiation source:

- High flux
- Small energy bandwidth
- Low divergence
- Small emittance
- Short duration

Simulation of Laser-driven Radiation

Z. M. Chitgar | 22 September 2021

Enhancement of laser intensities, high acceleration gradient ($1 \mathrm{GeV} / \mathrm{m}$), high repetition rate

Resolving a 10 keV photon simulation resolution should be at least $0.01 \mathrm{~nm} \rightarrow$ Computationally very expensive

Existing Alternative: Calculating Far-field radiation based on the electron trajectory.

Calculating near-field radiation by solving Maxwell's equation for electron trajectories.

BASICS OF LASER-DRIVEN RADIATION

BASICS OF LASER-DRIVEN RADIATION

CIRCULARLY POLARIZED (CP) HHG

CP- sources Applications:

- Photoelectron circular dichroism in chiral molecules
- Spin polarization of photoelectrons from topological insulators
- X-ray magnetic circular dichroism spectroscopy
- Magnetic microscopy
- Visualizing electric chirality and phase

In gas:

- There will be no recollision of electrons in case of CP laser pulse \Rightarrow no harmonics

In Plasma:

- Plasma Perturbation interacting with laser field

$$
\begin{aligned}
& \frac{\partial^{2} \mathrm{n}}{\partial \mathrm{t}^{2}}+\frac{\omega_{\mathrm{p}}^{2}}{\gamma_{0}} \mathrm{n}=\frac{\mathrm{c}^{2}}{2 \gamma_{0}^{2}} \frac{\partial \mathrm{~A}^{2}}{\partial \mathrm{x}} \\
& \mathbf{A}=\left(0, \delta \mathrm{~A}_{0} \cos \varphi,\left(1-\delta^{2}\right)^{\frac{1}{2}} \mathrm{~A}_{0} \sin \varphi\right) \\
& \mathbf{A}_{\mathrm{CP}}=\left(0, \mathrm{~A}_{0} \cos \varphi, \mathrm{~A}_{0} \sin \varphi\right)
\end{aligned}
$$

Right hand side of the equation will be zero:
no harmonic generation
Elliptically polarized harmonics could be generated by oblique incidence, OR

CIRCULARLY POLARIZED (CP) HHG

In Gas

Bi-color: 2 pump pulses with different wavelength
$\mathbf{A}_{\mathrm{CP}}=\left(0,0, \mathrm{~A}_{0} \sin \varphi\right)$
$\mathbf{A}^{\prime}{ }_{C P}=\left(0, A_{0}^{\prime} \cos \varphi^{\prime}, 0\right)$
a

- Every third harmonic is suppressed (frequency ration $\mathrm{q}=2$)
- Harmonics efficiency limited by ionization
- LP Cutoff: $E_{\max }=I_{p}+3.17 \mathrm{U}_{\mathrm{p}}$

BI-COLOR CP HARMONIC GENERATION IN PLASMA

(1D PIC Simulation results)

- $n_{x}=60000$ (400 grid per wavelength)
- underdense preionized helium plasma
- $10 \mu \mathrm{~m}$ from the left boundary
- 100 particles per cell
- Laser pulse wavelength $0.8 \mu \mathrm{~m}$
- Pulse duration 30 fs : intensity
- 2 pulses of ω_{0} and $q \omega_{0}$: phase ratio q
- Counter- or co-polarized

Incident Laser Profile: $I_{\omega 0}+I_{q \omega 0}$

BI-COLOR CP HARMONIC GENERATION IN PLASMA

(1D PIC Simulation results)
frequency ration $\mathbf{q}=2$

harmonics efficiency increases with:

- Laser intensity
- Plasma desnity

SIMULATION TOOLS

Fully Kinetic Particle in Cell (PIC) Code

$$
\begin{aligned}
& \mathbf{F}=\mathrm{q}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
& \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}} \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{B}=\mu_{0} \mathbf{j}+\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

Yee Scheme

$$
\frac{\mathrm{E}^{\mathrm{n}+1}-\mathrm{E}^{\mathrm{n}}}{\Delta \mathrm{t}}=\mathrm{c} \nabla \times \mathrm{B}^{\mathrm{n}+1 / 2}-4 \pi \mathrm{~J}^{\mathrm{n}+1 / 2}
$$

$$
\frac{\mathrm{B}^{\mathrm{n}+1 / 2}-\mathrm{B}^{\mathrm{n}-1 / 2}}{\Delta \mathrm{t}}=-\mathrm{c} \nabla \times \mathrm{E}^{\mathrm{n}}
$$

\checkmark Fully kinetic models like PIC codes: solve the Maxwell's equations for a velocity distribution of particles on each grid point
\checkmark Fluid models use the first moment of the velocity distribution on each grid point
$>$ Fluid models are faster

FLUID MODEL VS. FULLY KINETIC PIC CODE

1D3v Fluid Model - DS Field Solver

BI-COLOR CP HARMONIC GENERATION IN PLASMA

(Fluid Model)

$$
\mathbf{A}_{\mathbf{1}}=\left(0, \frac{\mathbf{A}_{0}}{\sqrt{2}} \cos \theta, \frac{\mathbf{A}_{0}}{\sqrt{2}} \sin \theta\right), \quad \theta=\omega_{0} t-k_{0} \mathrm{x},
$$

$$
\nabla^{2} \boldsymbol{A}-\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}=-\mu_{0} \boldsymbol{J}
$$

$$
\mathbf{A}_{\mathbf{2}}=\left(0, \frac{\mathrm{~A}_{0}^{\prime}}{\sqrt{2}} \cos \theta^{\prime}, \frac{\mathrm{A}_{0}^{\prime}}{\sqrt{2}} \sin \theta^{\prime}\right), \theta^{\prime}=\mathrm{q} \omega_{0} \mathrm{t}-\mathrm{k}_{\mathrm{q}} \mathrm{x}
$$

Esarey, Eric, et al. "Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas." IEEE transactions on plasma science 21.1 (1993): 95-104.

$$
\begin{gathered}
\frac{\partial n_{e}}{\partial t}=-\frac{c \partial\left(n_{e} u\right)}{\partial x} \\
\frac{\partial^{2} \varphi}{\partial x^{2}}=k_{p}^{2}\left(n_{e}-1\right) \\
\frac{\partial p_{x}}{\partial t}+c u \frac{\partial p_{x}}{\partial x}=c \frac{\partial \varphi}{\partial x}-\frac{c}{2 \gamma} \frac{\partial A_{\perp}^{2}}{\partial x}
\end{gathered}
$$

BI-COLOR CP HARMONIC GENERATION IN PLASMA

(Selection rules + Chirality/handedness)
Counter-Polarized: $I_{2 \omega} / I_{\omega}=2$

Co-Polarized: $I_{2 \omega} / I_{\omega}=2$

SELECTION RULES

SELECTION RULES

EFFICIENCY SCALING

Comparison between numerical and analytical fluid model

$$
\frac{P_{m}}{P_{0}} \propto\left(\frac{n_{e}}{n_{0}}\right)^{2 m}
$$

High repetition rate is useful

\checkmark Or solid targets: providing higher number of electrons for increasing the efficiency

BASICS OF LASER-DRIVEN BETATRON RADIATION

$K=\gamma k_{u} r_{u}$

$\omega / \omega_{\mathrm{p}}$
$\mathrm{K} \ll 1$

$\omega / \omega_{\mathrm{p}}$
$K \sim 1$

$\omega / \omega_{\mathrm{p}}$
$K>1$

$\omega / \omega_{\mathrm{p}}$
$K \gg 1$

TANDEM PULSE LASER WAKEFIELD ACCELERATION

$\checkmark \quad$ Lower injection threshold for the double-pulse scheme

TANDEM PULSE LASER WAKEFIELD ACCELERATION

PIC Simulation + Post-processing

Post-processing

- Calculating the far field based on the electron trajectory (Liénard-Wiechert potentials)

Horný, Vojtěch, et al. "Temporal profile of betatron radiation from laser-driven electron accelerators." Physics of Plasmas24.6 (2017): 063107.

Forschungszentrum

TANDEM PULSE LASER WAKEFIELD ACCELERATION

PIC Simulation + Post-processing

Electron self-injection threshold for the tandempulse laser wakefield accelerator

Physics of Plasmas 27, 023106 (2020); https://doi.org/10.1063/1.5117503
(D) Zahra M. Chitgar ${ }^{1,2, a)}$, (D) Paul Gibbon ${ }^{1,3}$, Jürgen Böker ${ }^{4}$, (D) Andreas Lehrach ${ }^{2,4}$, and (D) Markus Büscher ${ }^{5,6}$

TOWARD A NEAR-FIELD RADIATION MODEL

DS Scheme advantage:

\checkmark Dispersion-free
\checkmark Faster than standard Yee Scheme in PIC
\checkmark The 2D model is developed and parallelized and is being benchmarked

2D NUMERICAL FLUID MODEL BENCHMARK

Thomson scattering

Comparison with CASPER:

Sinha, Ujjwal, and Naveen Kumar. "Pairbeam propagation in a magnetized plasma for modeling the polarized radiation emission from gamma-ray bursts in laboratory astrophysics experiments." Physical Review E 101.6 (2020): 063204.

SUMMARY

- CP HHG using bi-color drivers, PIC simulation
- Relevance of developing a Fluid Model
- Fluid Model Benchmark for CP HHG and Thomson Scattering
- Laser-driven Betatron Radiation in a Tandem pulse scheme
\& OUTLOOK: Near-field time- and space-resolved model for keV betatron radiation

ACKNOWLEDGEMENTS

Jülich Supercomputing Centre
(JSC)

Large-Scale Nuclear Physics
Equipment (IKP-4)

Prof. Dr. Andreas Lehrach
Dr. Jürgen Böker

Peter Grünberg Institut Electronic
Properties (PGI-6)

Prof. Dr. Markus Büscher
Dr. Roman Adam
Christian Greb
Dr. Ilhan Engin
Andre Sobotta

Prof. Dr. Paul Gibbon
Dr. Dirk Brömmel
Dr. Ujjwal Sinha

