

Benedikt Hermann ^{*,1,2}, Thilo Egenolf ³, Uwe Niedermayer ⁴, Eduard Prat ¹, and Rasmus Ischebeck ¹

*benedikt.hermann@psi.ch, ¹Paul Scherrer Institut Switzerland, ²Universität Bern Switzerland, ³GSI Helmholtzzentrum für Schwerionenforschung GmbH Germany, ⁴TEMF TU Darmstadt Germany

Beam Shaping with Dielectric Structures

5th European Advanced Accelerator Concepts Workshop, EAAC :: September 20, 2021

≻ldea

Dielectric grating wakefields for beam shaping

➢Simulations

► Experiments at SwissFEL, PSI

Outlook
 DLA for ESASE at FELs
 (Enhanced Self-Amplified Spontaneous Emission)

Page 4

Metal vs. Dielectric Grating Wakefield

	Metallic	Dielectric
Field Threshold	100 GV/m	10 GV/m
Frequency	10 GHz	10 THz
Beam shaping	Passive, no temporal jitter	

P. Craievich, 2018, doi:10.18429/JACoW-LINAC2018-WE1A05

Courtesy of R. Ischebeck

Short Pulse Generation (Simulation, Athos SwissFEL)

Q = 200 pC non-linear compression

Short Pulse Generation (Simulation, Athos SwissFEL)

Q = 200 pC non-linear compression Wakefield Source: Double grating, fused silica Periodicity = 50 µm Length = 5 mm

Short Pulse Generation (Simulation, Athos SwissFEL)

Q = 200 pC non-linear compression Wakefield Source: Double grating, fused silica Periodicity = 50 µm Length = 5 mm Compression with magnetic chicane → 6-7 kA peak current ~1 fs rms spike length

Dechirping for Nominal Beam at SwissFEL (Simulation, Athos)

Remaining chirp after Linac 2

Double grating, fused silca Periodicity = $300 \ \mu m$, Aperture = $150 \ \mu m$ Length = $33 \ mm$

Tunable Wakefield Structures for Beam Shaping

Vary grating parameters (gap, pitch) along "invariant" direction of grating

T. Egenolf, 2020, 10.25534/tuprints-00014139

Experimental Setup: ACHIP Chamber at SwissFEL

DOI: 10.1103/PhysRevAccelBeams.24.022802

Experimental Setup: ACHIP Chamber at SwissFEL

- Beam Focusing: in-vacuum permanent magnet quadrupole triplet (A)
- Sample positioning: hexapod (B)
 - Beam diagnostics
 - Wire scanners
 - Scintillators , OTR
 - Dielectric wake field structures
 - Smith-Purcell THz generation

Beam Profile Characterization

YAG screen resolution limited →Wire scan tomography

- Nano-fabricated Au wires (1 μm)
- Sub-µm resolution

S. Borrelli, et al., 2018, DOI: 10.1038/s42005-018-0048-x

B. Hermann, et al., 2021, DOI: 10.1103/PhysRevAccelBeams.24.022802

Beam Profile Characterization

YAG screen resolution limited →Wire scan tomography

- Nano-fabricated Au wires (1 μm)
- Sub-µm resolution

S. Borrelli, et al., 2018, DOI: 10.1038/s42005-018-0048-x

B. Hermann, et al., 2021, DOI: 10.1103/PhysRevAccelBeams.24.022802

Beam Profile Characterization

YAG screen resolution limited \rightarrow Wire scan tomography

• Nano-fabricated Au wires (1 μm)

G. L. Orlandi, et al., 2020, https://doi.org/10.1103/PhysRevAccelBeams.23.042802

• Sub-µm resolution

S. Borrelli, et al., 2018, DOI: 10.1038/s42005-018-0048-x

B. Hermann, et al., 2021, DOI: 10.1103/PhysRevAccelBeams.24.022802

Wakefield Structure Design and Fabrication

- Fabricated by FEMTOprint SA, SiO2 fused silica, 50 μm period
- Tunable gratings (gap $10 100 \ \mu m$) for adaptive beam shaping
- Length: 10 mm 40 mm

Wakefield Measurment with Spectrometer

PAUL SCHERRER INSTITUT

Page 17

Effect of Beam Tilts on Transverse Wakefields

Beam tilts break symmetry

- \rightarrow Asymmetric streaking for offsets $\pm x$
- \rightarrow Reduce tilt with skew quad currents I_O

Spectrum for Different Gap Sizes Non-linear Compression (Current 10 fs FWHM)

Smaller gap \rightarrow larger energy loss

Net field gradients > 100 MV/m

Intensity Limits for DLAs

SwissFEL Experiment

- $\lambda = 50 \ \mu\text{m}$, $Q = 10 \ \text{pC}$, $\sigma_{
 m z} \approx 10 \ \text{fs}$
- Loss due to wakefields \approx 0.1 GV/m

Relativistic DLA ($\gamma \gg 1$)

- Realistic acceleration gradient \approx 1 GV/m
- $\lambda = 2 \ \mu m$
- Keeping $\frac{\sigma_{x,y,z}}{\lambda}$ (relative size of bunch) constant
- $\sigma_{\rm z} \approx 10 \text{ fs}/25 = 400 \text{ as}$
- wake loss = acc. gradient

$$\rightarrow Q_{max} = 10 * \left(\frac{2}{50}\right)^3 * 10 \ pC = 6.4 \ fC \approx 40\ 000\ e^-$$
 (per micro-bunch)

Simulation of Wakefield Experiment

Longitudinal phase space (LPS) measurement in injector

- \rightarrow Elegant tracking to wakefield experiment
- \rightarrow CST wakefield solver
- → Elegant tracking to spectrometer

Simulated effects around three times stronger than in experiment → More accurate LPS required, future PolariX TDC in Athos very benefitial

P. Craievich, et al., 2020, 10.1103/PhysRevAccelBeams.23.112001

Outlook: DLA for ESASE Enhanced Self-Amplified Spontaneous Emission

Generation of atto-second pulse trains at FELs obtained by laser modulation

ESASE successfully demonstrated at SLAC:

J. P. Duris, et al., 2021, https://doi.org/10.1103/PhysRevLett.126.104802

https://doi.org/10.1038/s41598-019-56201-8

Dielectric microstructure (DLA) instead of magnetic wiggler (conventional ESASE) to transfer energy from laser to electron beam resonantly

Outlook: DLA for eSASE

Q = 30 pC, limited by aperture and emittance

B. Hermann et al., 2019, https://doi.org/10.1038/s41598-019-56201-8

Outlook: DLA for eSASE

- Synchronization of laser (timing jitter, same for ESASE)
- Small aperture of dielectric structure (few μm), strong focusing, charge limitation
- + Efficient laser modulation of longitudinal phase space with DLA (~10x less laser power than for wiggler modulation)
- + Tunability of amplitude and wavelength:

- Beam shaping possibilities with dielectric grating wake fields
 - Short pulse generation
 - De-chirping
 - Stability (Passive \rightarrow no temporal jitter)
 - Tunability (Varying grating parameters)
 - Experiments at SwissFEL (ACHIP chamber)
 - Wire scanner tomography
 - Tunable wakefield structures
- DLA for ESASE

→ Dielectric structures, laser- or wakefield-driven, provide compact and cost-efficient alternatives to conventional beam shaping techniques

Benedikt Hermann ^{*,1,2}, Thilo Egenolf ³, Uwe Niedermayer ⁴, Eduard Prat ¹, and Rasmus Ischebeck ¹

*benedikt.hermann@psi.ch, ¹Paul Scherrer Institut Switzerland, ²Universität Bern Switzerland, ³GSI Helmholtzzentrum für Schwerionenforschung GmbH Germany, ⁴TEMF TU Darmstadt Germany

Beam Shaping with Dielectric Structures

5th European Advanced Accelerator Concepts Workshop, EAAC :: September 20, 2021

