Self-Correcting beams
 IN A MULTISTAGE PLASMA ACCELERATOR

Carl A. Lindstrøm

FLASHFORWARD» Research Fellow \| FTX-AST Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

PART 1:

The stability problem

Great experimental progress, but still lacking stability

Source: Wang et al. [Nature 595, 516 (2021)]
$>$ Recent demonstration of FEL gain [Wang et al., Nature 595, 516 (2021)] shows the promise of plasma acceleration.
$>$ However, results also show a need for higher stability.

Tight tolerances: A MAJOR Challenge for plasma accelerators

> Plasma accelerator cavities are small-trading size for gradient
$>$ Tight tolerances in both planes:
$>$ Transverse tolerances (on misalignments and mismatching) \Rightarrow emittance growth and beam loss

> Longitudinal tolerances (on synchronization and current profile) \Rightarrow energy spread and offsets

$>$ Applications require $0.1-1 \%$ energy spread and energy stability.
> Example:
Plasma density: $\quad n_{0}=10^{18} \mathrm{~cm}^{-3}$

$$
\Rightarrow 1 / \omega_{p}=18 \mathrm{fs}
$$

Field precision required: $\quad \sigma_{\delta}=0.1 \%$
Timing precision required: $\sigma_{\delta} / \omega_{p}=18$ as
(for synchronization and current-profile shaping)
$>$ Experimentally very challenging to control and diagnose.

$$
\begin{gathered}
\sim 10 \mathrm{~cm} \\
\sim 100 \mathrm{MV} / \mathrm{m}
\end{gathered}
$$

$$
\sim 10 \mu \mathrm{~m}
$$

~100 GV/m

Source: Lundh et al. [Nat. Phys. 7, 219 (2011)]

Choose your stabilization adventure!

Choose your stabilization adventure! (option 1)

Option 1: Stabilizing the inputs (Active stabilization)

(a)

(b)

$>$ Good for correcting slow drifts (improves with repetition rate).
Source: Maier at al. [Phys. Rev. X 10, 031039 (2020)]
$>$ Routinely employed by conventional accelerators (e.g., FELs).
> Being introduced also to plasma accelerators (e.g., LUX) - can use machine learning for modelling.
$>$ However, can become complex and expensive-requires fast and accurate diagnostics and actuators everywhere.
$>$ In conclusion: Essential for plasma accelerators, but may not be the whole solution.

Choose your stabilization adventure!

Choose your stabilization adventure! (option 2)

Option 2: Stabilizing the process (PASSIVE STABILIZATION)

> Method: make the acceleration process intrinsically stable
$>$ Lesson from conventional accelerators: phase stabilization
$>$ Introduced by Veksler (1944) and McMillan (1945).
$>$ A longitudinal lattice dispersion $\left(R_{56}\right)$ is required.
> Synchrotron oscillations: Each round, particles at higher energy move forward, where it experiences less acceleration, and vice versa (approx. simple harmonic motion).
$>$ Synchrotrons are designed around this mechanism.
$>$ Not required in conventional linacs (short accelerator, long bucket)
> Plasma accelerators may need it (short accelerator, short bucket)

Source: Craddock \& Symon [Rev. Accel. Sci. Tech. 1 (2008)]
and Trajectories in Longitudinal Phase Space

Source: Paul Scherrer Institute (PSI)

R_{56} AND FEEDBACK IN PLASMA ACCELERATORS

> Practically no R_{56} within a plasma-accelerator stage

> On-axis, ultrarelativistic particles effectively locked in place longitudinally (not transversely).
> Stops any feedback loop with the driver/wakefield.
> Feedback requires multiple stages:
$>$ Extract the beam
$>$ Apply R_{56} (with a magnetic chicane)
$>$ Re-inject the beam

Source: Litos et al. [Nature 515, 92, (2014)]
> Recent work by Ferran Pousa et al. makes us of two-stage correction [Phys. Rev. Lett. 123, 054801 (2019)]:
$>$ Dechirping the energy spread by flipping the phase space.
> Similar concept can increase energy stability [arXiv:2106.04177].
> Two stages: introduces a basic form of passive feedback.

$>$ However, this works mainly for linear chirps (no beam loading).

R_{56} AND FEEDBACK IN PLASMA ACCELERATORS

> Practically no R_{56} within a plasma-accelerator stage

> On-axis, ultrarelativistic particles effectively locked in place longitudinally (not transversely).
> Stops any feedback loop with the driver/wakefield.
> Feedback requires multiple stages:
$>$ Extract the beam
$>$ Apply R_{56} (with a magnetic chicane)
$>$ Re-inject the beam
> Recent work by Ferran Pousa et al. makes us of two-stage correction [Phys. Rev. Lett. 123, 054801 (2019)]:
$>$ Dechirping the energy spread by flipping the phase space.
> Similar concept can increase energy stability [arXiv:2106.04177].
> Two stages: introduces a basic form of passive feedback.
$>$ However, this works mainly for linear chirps (no beam loading).

Source: Litos et al. [Nature 515, 92, (2014)]

Source: Ferran Pousa et al. [Phys. Rev. Lett. 123, 054801 (2019)]

Beam loading and nonlinear fields

Source: Gilljohann et al. [Phys. Rev. X 9, 011046 (2019)]
> High-power applications (linear colliders, FELs) require energy efficiency.
$>$ Plasma wakes decay rapidly: must extract energy within the \sim first bucket \Rightarrow beam loading
$>$ Introduces a nonlinear wakefields that depend on the current profile of the bunch.
$>$ Can achieve low energy spread through current-profile shaping.

BEAM LOADING AND NONLINEAR FIELDS

Source: Gilljohann et al. [Phys. Rev. X 9, 011046 (2019)]
> High-power applications (linear colliders, FELs) require energy efficiency.
$>$ Plasma wakes decay rapidly: must extract energy within the \sim first bucket \Rightarrow beam loading
$>$ Introduces a nonlinear wakefields that depend on the current profile of the bunch.
$>$ Can achieve low energy spread through current-profile shaping.
> Problem: Beam loading breaks the usual mechanism of phase stability.
$>$ Need a generalized (collective-effect) version for both phase stability and energy-spread stability

Source: Lindstrøm et al. [Phys. Rev. Lett. 126, 014801 (2021)]

[^0]
Part 2:

Passive stabilization with a many stages

Preprint: Lindstrom, arXiv:2104.14460 (2021)

BASELINE:

No R56 - no correction mechanism

Starts at 10 GeV

245 stages
2 GeV per stage

Plasma density:
$10^{16} \mathrm{~cm}^{-3}$

1D simuLations based on 3D wakefields

$>$ Need exaflops of computing power to simulate 100+ stages in 3D.
$>$ In a blowout, we can treat longitudinal and transverse phase spaces as separate.
> However, we can approximate 3D using the 1D Lu equation:

$$
\begin{gathered}
r_{b} \frac{d^{2} r_{b}}{d \xi^{2}}+2\left(\frac{d r_{b}}{d \xi}\right)^{2}+1=\frac{2}{\pi n_{0} r_{b}^{2}} \frac{d N_{d}}{d \xi}, \\
E_{\|}=-2 \pi n_{0} e r_{b} \frac{d r_{b}}{d \xi} .
\end{gathered}
$$

$>$ Improved multi-sheath model (used here) [Dalichaouch et al., Phys. Plasmas 28, 063103 (2021)]
> An idealized scenario-lets us explore the mechanism.

The Setup

Large number of stages

$+$
 Magnetic chicanes between stages

$+$
 Beam loading

Assuming: Preserved transverse phase space

$$
R_{56} \text { scales as } 1 / \sqrt{\text { Energy }} \text { (any scaling works) }
$$

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

Start:

Initial particle distribution

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

Plasma accelerator stage:
Particles gain energy based on their position

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

Magnetic chicane:
Move particles longitudinally based on energy offset

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

Particles move in oval tracks, converging to an equilibrium current profile

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

Optimal current profile, flattened wakefield low energy spread, small energy offset

A SELF-CORRECTION MECHANISM IN LONGITUDINAL PHASE SPACE

With multistage correction

Self-matching in the longitudinal phase space

$>$ Similar to mismatching and emittance growth in transverse phase space.
> Before: A "mismatched" bunch in longitudinal phase space (wrong current profile and phase for the wakefield)
> After: A (self-)matched bunch in longitudinal phase space
$>$ Absolute energy spread (and abs. longitudinal emittance) only increases during the matching process
$>$ Relative energy spread (and rel. longitudinal emittance) is eventually damped with acceleration

Result:
 IMPROVED TOLERANCES

EXAMPLE \#1: BUNCH INJECTED TOO EARLY (10 FS)

No correction

With multistage correction

EXAMPLE \#2: Bunch injected too late (10 fs)

No correction

With multistage correction

Timing tolerances improve dramatically

$>$ Scan of injection timing/phase
$>$ Timing tolerance in this example:
$>$ Assuming 0.3\% FWHM energy acceptance.
$>\sim 1$ fs FWHM without correction
> ~200 fs FWHM with self-correction.
> Orders of magnitude improvement
$>$ Well within state-of-the-art synchronization ($\sim 10 \mathrm{fs}$).

Improved tolerances, Across the board

No correction

Multistage correction

Conclusions

Tight tolerances-a major challenge for plasma accelerators
Passive stabilization: stabilizing the acceleration process itself
> Plasma accelerators lack R_{56} for feedback-likely requires staging.
$>$ Beam loading required for efficiency-conventional phase stability not possible.
Multistage plasma accelerator separated by magnetic chicanes:
$>$ Feedback between the current profile and the wakefield shape.
> Redistributes charge to self-correct any mismatch in longitudinal phase space.
> Energy spreads and offsets are damped with acceleration.
> Dramatic improvement in tolerances, across all parameters.

Many open questions:

$>$ Ion motion? (i.e., transversely nonuniform focusing and acceleration)
$>$ Is complete 6D damping possible? (including transverse radiation damping)

$>$ Good staging? (achromatic, emittance-preserving and compact)
> How to implement this experimentally?

[^0]: Source: Paul Scherrer Institute (PSI)

