

European Research Council

Established by the European Commission

MARIA UBIALI UNIVERSITY OF CAMBRIDGE

HINTS FOR NEW PHYSICS FROM PRECISION PHYSICS

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021

NEW PHENO CHALLENGES AT THE LHC PRECISION FRONTIER

Lecture I:

"LHC Run III and the precision frontier"

Lecture II:

"New frontiers in the determination of the proton structure"

Lecture III:

"Hints for new physics from precision physics"

AIM: GIVE A PERSONAL PERSPECTIVE ABOUT WHAT I IDENTIFY AS MOST EXCITING CHALLENGES THAT MODERN COLLIDER PHENOMENOLOGY FACES.

> DISCLAIMER: IMPOSSIBLE TO GO INTO ALL DETAILS THAT TOPICS DESERVE NOR TO COVER ALL RELEVANT TOPICS.

OUTLINE

- The hunt for new physics at the LHC
- Direct searches
 - Current status
 - Looking for a broader Higgs sector
 - How QCD helps searches
- Indirect searches
 - ➡ The SMEFT framework
 - Need for simultaneous fits
- Conclusions and outlook

THE HUNT FOR NEW PHYSICS AT THE LHC

Interaction with SM? Self-interacting?

R. Postel, Fermilab/Muon g-s collaboration

<u>ROLE OF PRECISION IN THE HUNT FOR NEW PHYSICS AT THE LHC</u>

- Precision physics not only motivated by need of matching experimental precision
- Precision physics is key ingredient in the quest for new physics

<u>ROLE OF PRECISION IN THE HUNT FOR NEW PHYSICS AT THE LHC</u>

- Precision physics not only motivated by need of matching experimental precision
- Precision physics is key ingredient in the quest for new physics

DIRECT DIRECT SEARCHES

SEARCH STRATEGIES

- With a collider that is reaching unexplored energy scales, searches for new physics should aim at being sensitive to the highest possible energy scale and no stone should be left unturned.
- LHC strategy: look for New Physics by covering the widest range of theoretically or experimentally motivated searches

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2020

No		Model	Si	gnature	e ∫	` <i>L dt</i> [fb⁻	¹]	N	lass limit					Reference
Bit 3: μ-φi ² D - μ 2 k μ k f ² 1 10 1 12 <th1 12<="" th=""> 1 12 <th1 12<="" th=""> <t< th=""><th>S</th><th>$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$</th><th>0 e, µ mono-jet</th><th>2-6 jets 1-3 jets</th><th>$E_T^{ m miss}$ $E_T^{ m miss}$</th><th>139 36.1</th><th> <i>q</i> [10× Deg <i>q</i> [1×, 8× 0 </th><th>gen.] Degen.]</th><th>0.43</th><th>0.71</th><th></th><th>1.9</th><th>$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV} \\ m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$</th><th>ATLAS-CONF-2019-040 1711.03301</th></t<></th1></th1>	S	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	0 e, µ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	139 36.1	 <i>q</i> [10× Deg <i>q</i> [1×, 8× 0 	gen.] Degen.]	0.43	0.71		1.9	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV} \\ m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$	ATLAS-CONF-2019-040 1711.03301
Sol Sol $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} \geq 2 + \mu_{\mu} \geq 2 + \mu_{\mu} \geq 2 + \mu_{\mu} \geq 2 + \mu_{\mu} = 1$ $1 + \mu_{\mu} = 1$	nclusive Searche	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}^0_1$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ğ ğ			Forbidden		2.35 1.15-1.95	${f m}(ilde{\chi}_1^0){=}0~{ m GeV}$ ${f m}(ilde{\chi}_1^0){=}1000~{ m GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
Bit 1.2 $m(p, d)$ $m(p)$ <		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e, µ	2-6 jets		139	ĝ					2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	ATLAS-CONF-2020-047
Bit Bit 1.12 1.137 m(f) 0.0000 ALL ALL <th< th=""><th>$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^0_1$</th><th>$ee, \mu\mu$</th><th>2 jets</th><th>$E_T^{\text{miss}}$</th><th>36.1</th><th>ĝ</th><th></th><th></th><th></th><th>1.2</th><th></th><th>$m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$</th><th>1805.11381</th></th<>		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	$ee, \mu\mu$	2 jets	E_T^{miss}	36.1	ĝ				1.2		$m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.11381
S $h_{1}^{-1} = h_{1}^{-1} + $		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{miss}	139 139	ĝ ĝ			1	.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
b, b, b, -ub? (rb?) Multiple Sb. b? (rb?) Multiple Sb.	-	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	ĝ ĝ				1.25	2.25	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
$ \begin{bmatrix} h_{1,h_{1},h_{2}}^{2} - h_{1}^{2} + h$		$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple		36.1 139	${egin{array}{c} { ilde b}_1 \ { ilde b}_1 \end{array}$	Forbidde	en Forbidden	0.9 0.74		$m(\tilde{\chi}_1^0)=200$	$m(\tilde{\chi}_{1}^{0})$ =300 GeV, BR $(b\tilde{\chi}_{1}^{0})$ =1 GeV, $m(\tilde{\chi}_{1}^{+})$ =300 GeV, BR $(t\tilde{\chi}_{1}^{+})$ =1	1708.09266, 1711.03301 1909.08457
$ \begin{bmatrix} \frac{1}{2} & \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} & -\frac{1}{2}, \frac{1}{2}, \frac{1}$	ks on	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$egin{array}{c} ar{b}_1 \ ar{b}_1 \end{array}$	Forbidden		0 0.13-0.85	.23-1.35	Δm(λ Δr	$\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=100 GeV n($\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=0 GeV	1908.03122 ATLAS-CONF-2020-031
$ \begin{bmatrix} 3 \\ 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -$	ucti	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1				1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
$ \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	rod	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	E_T^{miss}	139	ĩ ₁		0.44-0.	.59			$m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2019-017
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gen.	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau G$	$1\tau + 1e,\mu,\tau$	2 jets/1 b	E_T^{miss}	36.1	<i>t</i> ₁			0.95	1.16		m($\tilde{\tau}_1$)=800 GeV	1803.10178
$\frac{1}{17} \frac{1}{17} \frac$	s"" ($t_1 t_1, t_1 \rightarrow c \chi_1 / \bar{c} \bar{c}, \bar{c} \rightarrow c \chi_1$	0 e, µ	2 C	E_T	30.1	\tilde{t}_1		0.46	0.85			$m(\chi_1)=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.01649
$ \frac{1}{125} \frac{1}{12} \frac{1}{125} \frac{2}{12} \frac{2}{12} \frac{1}{12} - \frac{1}{12} \frac{1}{$			0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{\rm miss}$	36.1	\tilde{t}_1		0.43				$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1711.03301
$ \frac{1}{2} \frac{1}{2}^{2} \frac{1}{2}^{2} \sqrt{u} WZ = 3, e_{\mu} + \frac{E_{\mu}^{min}}{2} \frac{1}{2} \frac{1}$		$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0 \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e, μ 3 e, μ	1-4 <i>b</i> 1 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139			Forbidden	0.067- 0.86	1.18	$m(\tilde{\chi}_1^0)$	$m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ =360 GeV, $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	SUSY-2018-09 SUSY-2018-09
$ \begin{array}{c} \frac{1}{2} \frac{1}{2$		${ ilde \chi}_1^\pm { ilde \chi}_2^0$ via WZ	3 e, μ ee, μμ	≥ 1 jet	$\begin{array}{c} E_T^{\rm miss} \\ E_T^{\rm miss} \end{array}$	139 139	$\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \end{array}$	0.205		0.64			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5~GeV$	ATLAS-CONF-2020-015 1911.12606
$ \begin{array}{c} \int_{1}^{2} \int_{1}^{2$		$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 e, µ		$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}$		0.42				$m(\tilde{\chi}_1^0)=0$	1908.08215
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	÷	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>	0-1 <i>e</i> , <i>µ</i>	$2 b/2 \gamma$	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ For	rbidden		0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
$ \begin{array}{c} \mathbf{T}_{1,k}^{n} \mathbf{T}_{1,k}^{n$	rec V	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^+$ via $\tilde{\ell}_L / \tilde{\nu}$	2 <i>e</i> , µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	1 0.40.0		1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$	1908.08215
$\frac{d_{12}g_{12}g_{12}}{d_{12}} + \frac{d_{12}g_{12}}{d_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}} + \frac{d_{12}g_{12}}{d_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} + \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} + \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} + \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}g_{12}} + \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}g_{12}} = \frac{d_{12}g_{12}}{d_{12}g_{12}g_{12}} $	9	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \chi_1^{\circ}$	27	0 iets	E_T^{miss}	139		J 0.16-0.	.3 0.12-0.39	0.7			$m(\chi_1^{\circ})=0$ $m(\tilde{\chi}_1^{\circ})=0$	1911.06660
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\ell_{\mathrm{L,R}}\ell_{\mathrm{L,R}}, \ell \rightarrow \ell \ell_{\mathrm{I}}$	ee,μμ	≥ 1 jet	E_T^{T}	139	ĩ	0.256		0.7			$m(\ell_1)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 139	Ĥ Ĥ	0.13-0.23	0.55	0.29-0.88			$ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $	1806.04030 ATLAS-CONF-2020-040
Stable \tilde{g} R-hadron Multiple 36.1 \tilde{g} <	cles	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1			0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
$\frac{2}{1} \frac{1}{1} \frac{1}$	arti	Stable \tilde{g} R-hadron		Multiple		36.1	ĝ					2.0		1902.01636,1808.04095
$\sum_{k_{1}^{2}, k_{1}^{2}, k_{2}^{2}, k_{1}^{2}, k_{1}^$	D Q	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 1]$	0 ns, 0.2 ns]				2.05 2.4	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ			139	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR	$(Z\tau)=1, BR(Ze)=1]$	0	.625 1.05	5		Pure Wino	ATLAS-CONF-2020-009
$ \frac{1}{2} \hat{t}_{1}^{2} \hat{t}_{1}^{2} \hat{t}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell_{VV} }{ \hat{g}_{3}, \hat{g} \rightarrow qq \hat{k}_{1}^{0}, \hat{k}_{1}^{0} \rightarrow qq q } $ $ \frac{4 e, \mu 0 \text{ jets } E_{T}^{miss} 36.1 }{4.5 \text{ large } R_{j} \text{ iets } 36.1 } $ $ \frac{1}{4.5 \text{ large } R_{j} \text{ iets } 36.1 }{Multiple} $ $ \frac{1}{36.1} $ $ \frac{1}{4.5 \text{ large } R_{j} \text{ iets } 36.1 }{Multiple} $ $ \frac{1}{36.1} $ $ \frac{1}{8} \frac{(m \tilde{k}_{1}^{0}) = 200 \text{ GeV}, 1100 \text{ GeV}}{1.13} $ $ \frac{1.3}{1.9} $ $ 1.$		LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu,e au,\mu au$			3.2	$\tilde{\nu}_{\tau}$					1.9	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07	1607.08079
$ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q q $ $ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2}, \tilde{\chi}_{1}^{0} \rightarrow q q q q q q q q q q q q q q q q q q $		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0 jets	$E_T^{\rm miss}$	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 = [\lambda_{i33}]$	$\lambda \neq 0, \lambda_{12k} \neq 0$]		0.82	1.33		$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΡV	$\tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq$	4-	5 large-R je Multiple	ts	36.1 36.1	$ \begin{array}{ccc} \tilde{g} & [m(\tilde{\mathcal{X}}_{1}^{0})=2\\ \tilde{g} & [\mathcal{\lambda}_{112}^{\prime\prime}=2e \cdot \\ \end{array} \end{array} $	200 GeV, 1100 GeV] -4, 2e-5]		1.05	1.3 5	1.9 2.0	Large $\lambda_{112}^{"}$ m($\tilde{\chi}_1^0$)=200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Œ	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	$t [\lambda''_{323}=2e^{-t}]$	4, 1e-2]	0.55	5 1.05	5		$m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$	ATLAS-CONF-2018-003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$tt, t \to b\chi_1^-, \chi_1^- \to bbs$		$\geq 4b$ 2 jets $\pm 2h$		139	t		Forbidden	0.95			m(X ₁)=500 GeV	ATLAS-CONF-2020-016
Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 <i>e</i> , μ 1 μ	2 b DV		36.1 136	$\tilde{t}_1 = [qq, bs]$ $\tilde{t}_1 = \tilde{t}_1 = [1e-10<$	X'<1e-8, 3e-10< ↓	λ' _{23k} <3e-9]	1.0	0.4-1.4	5 1.6	$\begin{array}{l} BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\% \\ BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \ \cos\theta_i = 1 \end{array}$	1710.05544 2003.11956
Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]														
	Only	a selection of the available mas	s limits on r	new states	s or	1	0 ⁻¹				1		Mass scale [TeV]	

"Only a selection of the available mass limits on new states phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2020

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	E_{T}^{miss}	∫£ dt[fb	⁻¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu q q$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ \geq 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j - 2j $\ge 2j$ $\ge 3j$ - 2j/1J $\ge 1b, \ge 1J/$ $\ge 2b, \ge 3$	Yes - - - Yes 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	MD7.7 TeV $n = 2$ MS8.6 TeV $n = 3$ HLZ NLOMth8.9 TeV $n = 6$ Mth8.2 TeV $n = 6, M_D = 3$ TeV, rot BHMth9.55 TeV $n = 6, M_D = 3$ TeV, rot BHMth9.55 TeV $n = 6, M_D = 3$ TeV, rot BHMth2.3 TeV $n = 6, M_D = 3$ TeV, rot BHGKK mass2.3 TeV $k/M_{Pl} = 0.1$ GKK mass2.0 TeV $k/M_{Pl} = 1.0$ GKK mass3.8 TeV $\Gamma/m = 15\%$ KK mass1.8 TeVTier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{HVT} W' \to WZ \to \ell\nu qq q \operatorname{model} \\ \operatorname{HVT} V' \to WV \to qq qq \operatorname{model} \\ \operatorname{HVT} V' \to WH / ZH \operatorname{model} B \\ \operatorname{HVT} W' \to WH \operatorname{model} B \\ \operatorname{LRSM} W_R \to tb \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ I \ B \\ I \ B \\ 0 \ e, \mu \\ multi-channe \\ 0 \ e, \mu \\ multi-channe \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 \\ - \\ 2 j / 1 J \\ 2 J \\ \geq 1 b, \geq 2 \\ \\ 1 J \end{array}$	- - Yes Yes Yes J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 4.1 TeV V' mass 6.0 TeV W' mass 3.7 TeV W' mass 3.7 TeV W' mass 3.8 TeV Qv = 3 $g_V = 3$ V' mass 2.93 TeV V' mass 3.2 TeV Qr mass 3.2 TeV W' mass 3.25 TeV Wr mass 3.25 TeV Wr mass 5.0 TeV	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
CI	CI qqqq CI ℓℓqq CI tttt	_ 2 <i>e</i> , μ ≥1 <i>e</i> ,μ	2 j ≥1 b, ≥1 j	_ _ Yes	37.0 139 36.1	Λ 21.8 TeV $\eta_{LL}^ \Lambda$ 35.8 TeV $\eta_{LL}^ \Lambda$ 2.57 TeV $ C_{4t} = 4\pi$	1703.09127 CERN-EP-2020-066 1811.02305
MQ	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac DV $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM	1) 0 e, μ DM) 0 e, μ 0 e, μ Λ) 0-1 e, μ	$\begin{array}{c} 1-4j\\ 1-4j\\ 1J,\leq 1j\\ 1b,01J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{array}{c c} \mathbf{m}_{med} & \mathbf{1.55 \ TeV} \\ \mathbf{m}_{med} & \mathbf{1.67 \ TeV} \\ \mathbf{m}_{med} & \mathbf{1.67 \ TeV} \\ \mathbf{M}_{\star} & \mathbf{700 \ GeV} \\ \mathbf{m}_{\phi} & \mathbf{3.4 \ TeV} \end{array} \qquad \begin{array}{c} g_q = 0.25, \ g_{\chi} = 1.0, \ m(\chi) = 1 \ \text{GeV} \\ g = 1.0, \ m(\chi) = 1 \ \text{GeV} \\ m(\chi) < 150 \ \text{GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ \text{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 μ 2 τ 0-1 <i>e</i> ,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass1.4 TeVLQ mass1.56 TeVLQ mass1.56 TeVLQ mass1.03 TeVLQ mass970 GeV $\mathcal{B}(LQ_3^u \to b\tau) = 1$ $\mathcal{B}(LQ_3^d \to t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
neavy quarks	$\begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe 2(SS)/≥3 <i>e</i> ,μ 1 <i>e</i> , μ 0 <i>e</i> ,μ, 2 γ 1 <i>e</i> , μ		Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass1.37 TeVSU(2) doubletB mass1.34 TeVSU(2) doubletT_{5/3} mass1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Y mass1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass1.21 TeV $\kappa_B = 0.5$ Q mass690 GeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 2.6 TeV $\Lambda = 3.0$ TeV ℓ^* mass 3.0 TeV $\Lambda = 3.0$ TeV ν^* mass 1.6 TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$1 e, \mu 2 \mu 2,3,4 e, \mu (SS 3 e, \mu, \tau - - - - - - - - - -$	≥ 2 j 2 j 	Yes 5 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N° mass560 GeVN _R mass3.2 TeVH** mass870 GeVH** mass870 GeVH** mass400 GeVmulti-charged particle mass1.22 TeVmonopole mass2.37 TeV	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	p	artial data	full d	ata			

*Only a selection of the available mass limits on new states or phenomena is shown.

DIRECT SEARCHES FOR A BROADER HIGGS SECTOR

- The Higgs provides a privileged searching ground. It has just been discovered. Some of its properties are either just been measured or completely unknown. A plethora of production and decay modes available.
- First "elementary" scalar ever : carrier of a new Yukawa force, whose effects still need to be measured.
- Several motivations to have a reacher scalar sector with more doublets or higher representations ⇒ Higgs might be the first of many new scalar states.

DIRECT SEARCHES FOR A BROADER HIGGS SECTOR

- The Higgs provides a privileged searching ground. It has just been discovered. Some of its properties are either just been measured or completely unknown. A plethora of production and decay modes available.
- First "elementary" scalar ever : carrier of a new Yukawa force, whose effects still need to be measured.
- Several motivations to have a reacher scalar sector with more doublets or higher representations ⇒ Higgs might be the first of many new scalar states.
- 2HDM simplest extension of SM Higgs sector two Higgs doublets, leading to five physical scalar Higgs bosons.
- Simplified model that embeds several specific models (like MSSM)

A FULLY AUTOMATED SIMULATION CHAIN...

... TO SEARCH FOR CHARGED HIGGS

Charged Higgs main production mechanisms at the LHC:

 Mass effects are there at any order
 Straightforward implementation in MC event generators at LO and NLO

- ✓ It resums initial state large logs into b-PDFs leading to more stable predictions
- Computing higher orders is easier
- \mathbf{X} p_T of bottom enters at higher orders
- X Implementation in MC depends on the gluon splitting model in the PS

- For total cross section a matching of state-ofthe-art 4FS and 5FS calculations performed
 Flechl, Klees, Kramer, Spira, MU, Phys.Rev. D91 (2015)
- All sources of uncertainties included (PDFs, m_b, a_s, scales, y_b) and scale settings for the 5FS motivated by kinematical study in

Maltoni, Ridolfi, MU, JHEP 1207 (2012) 022

For **inclusive** xsec, where resummation nor b-quark mass effects are essential, 4FS and 5FS pictures are not too different, once judicious scales are chosen

		8 TeV	14 TeV		
$M_{\mathrm{H}^{\pm}}$ [GeV]	$\tilde{\mu}$ [GeV]	$(m_{ m t}+M_{ m H^\pm})/ ilde{\mu}$	$\tilde{\mu}$ [GeV]	$(m_{ m t}+M_{ m H^\pm})/ ilde{\mu}$	
200	67.3	5.5	74.9	5.0	
300	80.3	5.9	90.6	5.2	
400	92.1	6.2	105.3	5.4	
500	103.1	6.5	119.0	5.7	

 $\approx (m_{H^+} + m_t)/5$

- To compare signal shapes with respect measured distributions, need fully differential predictions
- Until 2015, MC@NLO [Weydert et al, Eur.Phys.J. C67 (2010)] and POWHEG
 [Klasen et al, Eur.Phys.J. C72 (2012)] only available in the 5FS and differences between 4FS (leading order
 MG5_aMCatNLO + K-factor) and 5FS was big source of systematic uncertainty in charged Higgs searches

CMS-CR-2018-389

Implementation of 2HDM and charged Higgs production in the 4FS and 5FS schemes in the automatic framework provided by MadGraph5_aMC@NLO Degrande, MU, Wiesemann, Zaro JHEP 1510 (2015)

Illustration by M. Zaro

- NLO results: FKS method for IR subtraction and OPP integralreduction procedure for one-loop matrix elements
- NLO+PS: MC@NLO method
- Scale and PDF uncertainties included
- Models resulting into a set of rules (UFO) are now generated automatically [C.Degrande 1406.3030]
- R2 and UV counter-terms automatically generated. Tested and validated in the 2HDM case

Alwall, Frederix, Frixione, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Hirschi, Zaro arXiv: 1405.0301

inclusive observables

5FS exhibit stronger dependence on the Parton Shower for b-exclusive observables

INTERMEDIATE MASS CHARGED HIGGS

- Intermediate region has not been studied in the Run I
- LO total cross section has large (30-50%) theoretical errors. For accurate predictions one needs to compute NLO correction. Need a MC tool to simulate the signal in the region in which charged Higgs mass close to top mass.

INTERMEDIATE MASS CHARGED HIGGS

- Computation done with MadGraph5_aMC@NLO, improved with resonance-aware FKS subtraction Frederix et al. arXiv:1603:01178
- Complex top-mass (and Yukawa) scheme to include the top width in a gauge-invariant way.
 Γ_t computed at NLO for every (m_{H±}, tanβ) point
- Use massive bottom quarks (4FS).

INURCU SEARCHES

- ➡ EFT is a powerful and model-independent approach.
- Assumption: new physics states are heavy
- Write the Lagrangian with only light SM particles
- BSM effects can be incorporated as a momentum expansion

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

BSM effects SM particles

$$\begin{aligned} \hbar &= c = 1\\ \dim A^{\mu} &= 1\\ \dim \phi &= 1\\ \dim \psi &= 3/2 \end{aligned}$$

- ➡ EFT is a powerful and model-independent approach.
- Assumption: new physics states are heavy
- Write the Lagrangian with only light SM particles
- BSM effects can be incorporated as a momentum expansion

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

BSM effects SM particles

- ➡ EFT is a powerful and model-independent approach.
- Assumption: new physics states are heavy
- Write the Lagrangian with only light SM particles
- BSM effects can be incorporated as a momentum expansion

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

BSM effects SM particles

- ➡ EFT is a powerful and model-independent approach.
- Assumption: new physics states are heavy
- Write the Lagrangian with only light SM particles
- BSM effects can be incorporated as a momentum expansion

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

BSM effects SM particles

- ➡ EFT is a powerful and model-independent approach.
- Assumption: new physics states are heavy
- Write the Lagrangian with only light SM particles
- BSM effects can be incorporated as a momentum expansion

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

BSM effects SM particles

- EFT is a powerful and model-independent approach.
- Assumption: new physics states are heavy
- Write the Lagrangian with only light SM particles
- BSM effects can be incorporated as a momentum expansion

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

BSM effects SM particles

BSM is a perturbation around the SM. EFT reveals high energy physics through precise measurements at low energy. Each operator can be improved at higher orders including QCD and EW corrections

THE STANDARD MODEL EFFECTIVE FIELD THEORY

- **#1** The basic framework is that of a relativistic quantum field theory, with interactions between particles described by a local Lagrangian.
- **#2** The Lagrangian is invariant under the <u>linearly</u> realised local SU(3)×SU(2)×U(1) symmetry
- **#3** The vacuum state of the theory preserves only $SU(3)_C \times U(1)_{em}$ local symmetry, as a result of the Brout-Englert-Higgs mechanism. The spontaneous breaking of the $SU(2)_L \times U(1)_Y$ symmetry down to $U(1)_{em}$ arises due to a vacuum expectation value (VEV) of a scalar field transforming as $(1, 2)_{1/2}$ under the local symmetry.

#4 Interactions are renormalizable, which means that only interactions up to the canonical mass dimension 4 are allowed in the Lagrangian.

THE STANDARD MODEL EFFECTIVE FIELD THEORY

#1 The basic framework is that of a relativistic quantum field theory, with interactions between particles described by a local Lagrangian.

#2 The Lagrangian is invariant under the <u>linearly</u> realised local SU(3)×SU(2)×U(1) symmetry

#3 The vacuum state of the theory preserves only $SU(3)_C \times U(1)_{em}$ local symmetry, as a result of the Brout-Englert-Higgs mechanism. The spontaneous breaking of the $SU(2)_L \times U(1)_Y$ symmetry down to $U(1)_{em}$ arises due to a vacuum expectation value (VEV) of a scalar field transforming as $(1, 2)_{1/2}$ under the local symmetry.

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}^{ ext{SM}} + \mathcal{L}^{D=6}, \qquad \mathcal{L}^{D=6} = rac{1}{v^2} \sum_{lpha} c_{lpha} O_{lpha}$$

 $O_{\alpha} \rightarrow \text{complete basis of SU(3)} \times \text{SU(2)} \times \text{U(1)}$ invariant D = 6 operators constructed out of the SM fields. In general 2499 independent operators after imposing baryon and lepton number conservation. Flavor universality, 76 operators. Only 9 combinations of these operators will be relevant for a completely general description of the Higgs signal strength measurements at the LHC

DIM-6 OPERATORS

	X^3		$arphi^6$ and $arphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^\daggerarphi)(ar{l}_p e_rarphi)$	
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{arphi \Box}$	$(arphi^\dagger arphi) \Box (arphi^\dagger arphi)$	Q_{uarphi}	$(arphi^\dagger arphi) (ar q_p u_r \widetilde arphi)$	
Q_W	$arepsilon^{IJK} W^{I u}_\mu W^{J ho}_ u W^{K\mu}_ ho$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	$(arphi^\dagger arphi) (ar q_p d_r arphi)$	
$Q_{\widetilde{W}}$	$arepsilon^{IJK} \widetilde{W}^{I u}_{\mu} W^{J ho}_{ u} W^{K\mu}_{ ho}$					
	$X^2 arphi^2$		$\psi^2 X arphi$	$\psi^2 arphi^2 D$		
$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p \sigma^{\mu u} e_r) au^I arphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{l}_p \gamma^\mu l_r)$	
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{l}_p au^I \gamma^\mu l_r)$	
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{arphi} G^A_{\mu u}$	$Q_{arphi e}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{e}_p \gamma^\mu e_r)$	
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{q}_p \gamma^\mu q_r)$	
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde arphi B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{q}_p au^I \gamma^\mu q_r) ight. ight.$	
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{u}_p \gamma^\mu u_r)$	
$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(arphi^\dagger i \overset{\leftrightarrow}{D}_\mu arphi) (ar{d}_p \gamma^\mu d_r)$	
$Q_{arphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar q_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	

[Buchmuller and Wyler, 86]

[Grzadkowski et al, 10]

DIM-6 OPERATORS

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$	
$Q_{qq}^{\left(1 ight)}$	$(ar q_p \gamma_\mu q_r)(ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p\gamma_\mu u_r)(ar{u}_s\gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{\left(3 ight) }$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	
$Q_{lq}^{\left(1 ight) }$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{\left(3 ight) }$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{\left(1 ight) }$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
		$Q_{ud}^{\left(1 ight) }$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{\left(8 ight)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{\left(1 ight)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	<i>B</i> -violating				
Q_{ledq}	$Q_{ledq} = (ar{l}_p^j e_r) (ar{d}_s q_t^j)$		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha)^TCu_r^eta ight]\left[(q_s^{\gamma j})^TCl_t^k ight]$			
$Q_{quqd}^{\left(1 ight)}$	$Q^{(1)}_{quqd} = (ar{q}^j_p u_r) arepsilon_{jk} (ar{q}^k_s d_t)$		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(u_s^\gamma)^TCe_t ight]$			
$Q^{(8)}_{quqd} \mid (\bar{q}^j_p T^A u_r) \varepsilon_{jk} (\bar{q}^k_s T^A d_t) \mid$		$Q_{qqq}^{\left(1 ight)}$	$arepsilon^{lphaeta\gamma}arepsilon_{jk}arepsilon_{mn}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$			
$Q_{lequ}^{(1)}$	$Q^{(1)}_{lequ} = (ar{l}^j_p e_r) arepsilon_{jk} (ar{q}^k_s u_t)$		$arepsilon^{lphaeta\gamma}(au^{I}arepsilon)_{jk}(au^{I}arepsilon)_{mn}\left[(q_{p}^{lpha j})^{T}Cq_{r}^{eta k} ight]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$			
$egin{array}{c c c c c c c c c c c c c c c c c c c $		Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$			

[Buchmuller and Wyler, 86]

[Grzadkowski et al, 10]

CONSTRAINING THE SMEFT AT THE LHC

- Large number of operators, yet a plethora of observables and final states to measure.
- Precision observables in the bulk of the distributions while tails provide sensitivity through the energy growth.
- Validity issues arise, as well as for the interpretation in terms of UV models.

old S is a generic scale, which is process and operator dependent

$$Obs_i = Obs_i^{SM} + M_{ij} \cdot \frac{s}{\Lambda^2} c_j$$

 $\Lambda > \sqrt{s}\sqrt{|c_i|}$ $|c_i|s/\Lambda^2 < \delta$

 $\sqrt{s} < \Lambda$

CONSTRAINING THE SMEFT AT THE LHC

- A global constraining strategy needs to be employed
- Identify the operators entering predictions for each observable (LO, NLO,..)
- Find enough observables (cross sections, BR's, distributions,...) to constrain all operators.

CONSTRAINING THE SMEFT AT THE LHC

arXiv:2012.02779

Most fits of SMEFT coefficients are restricted to a few observables or sectors, thus reducing the number of dim-6 operators involved.

Possibly the most global fit so far includes 34 dim-6 operators (linearly) and include EW precision observable, diboson production at LEP and LHC, LHC Run I and II Higgs, Tevatron and LHC top data for a total of ~300 measurements

[Ellis, Madigan, Mimasu, Sanz, You arXiv: 2012.02779]

A SHORT DIGRESSION: PDFS AND α_s

- → PDFs and α_s strongly correlated (PDF evolution with the scale and hard cross sections)
- → Cleanest determinations of α_s from processes that do not require knowledge of the PDFs
- A determination of α_s jointly with the PDFs has $^{0.25}$ advantage that it is driven by the combination of many experimental measurements from $\underbrace{\circ}_{\sigma}^{0.25}$ 0.2 several different processes.

A SHORT DIGRESSION: PDFS AND α_s

- PDFs and α_s strongly correlated (PDF evolution with the scale and hard cross sections)
- → Cleanest determinations of α_s from processes that do not require knowledge of the PDFs
- A determination of α_s jointly with the PDFs has advantage that it is driven by the combination of many experimental measurements from several different processes.

- → Early determinations involve a scan over α_s and ignored PDF and α_s correlation in the fit
- Recent simultaneous determination of PDF and α_s using correlated replica method
- Many determination of α_s from analyses of specific
 LHC processes have been published recently (from tt~, Z and W production, jets)

 \Rightarrow How reliable are such partial determination of α_s ?

Ball, Carrazza, Del Debbio, Forte, Kassabov, Rojo, Slade, MU 1802.03398

A SHORT DIGRESSION: PDFS AND α_s

Forte, Kassabov 2001.04986

We show that any determination of the strong coupling α_s from a process which depends on parton distributions, such as hadronic processes or deep-inelastic scattering, generally does not lead to a correct result unless the parton distributions (PDFs) are determined simultaneously along with α_s . We establish the result by first showing an explicit example, and then arguing that the example is representative of a generic situation which we explain using models for the shape of equal χ^2 contours in the joint space of α_s and the PDF parameters.

These results point towards the need of new generation of global fits, in which all ingredients that enter theoretical predictions are treated consistently.

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021 - M. UBIALI

WHAT ABOUT PDF FITS AND SMEFT FITS?

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021 - M. UBIALI

WHAT ABOUT PDF FITS AND SMEFT FITS?

A SIGNIFICANT OVERLAP

Hartland et al 1901.05965

A SIGNIFICANT OVERLAP

Kinematic coverage

A SIGNIFICANT OVERLAP

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021 - M. UBIALI

HOW TO DISENTANGLE THE EFFECTS?

Cuts?

Conservative partons?

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021 - M. UBIALI

SIMULTANEOUS FITS

Greljo, Iranipour, Kassabov, Madigan, Moore, Rojo, MU, Voisey, arXiv:2104.02723

DRELL-YAN HIGH-ENERGY TAILS

- Drell-Yan (DY) tails, a.k.a. high-mass DY
- DY used in **both PDF and EFT determinations**:
 - 1. Important constraints on $q\bar{q}$
 - 2. New physics could distort tails

OBLIQUE CORRECTIONS

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_\rho W^a_{\mu\nu})^2 - \frac{\hat{Y}}{4m_W^2} (\partial_\rho B_{\mu\nu})^2$$

Studied in e.g. arXiv: 1609.08157, 2008.12978

- Electroweak (EW) oblique corrections: parametrise self-energy of EW gauge bosons
- Four operators that can be matched to dim-6 in SMEFT: $\hat{S}, \hat{T}, \hat{W}, \hat{Y}$

SM PDFS VERSUS SMEFT PDFS

Standard procedure: SM PDFs

- 1. Take data, make predictions accounting for operators with fixed SM PDF set
- 2. Compute χ^2 for set of Wilson coefficients (WCs)

$$\chi^2 = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} (D_i - T_i) (\text{cov}^{-1})_{ij} (D_j - T_j)$$

- 3. Fit function
- 4. Extract bounds

$$T = f_{1,\rm SM} \otimes f_{2,\rm SM} \otimes \hat{\sigma}_{\rm BSM}$$

Our procedure: SMEFT PDFs

- Same as previously, but...
- + For each value of WC do a consistent PDF fit $\Rightarrow N_{WCs}$ SMEFT PDF sets

$$T = f_{1,\text{BSM}} \otimes f_{2,\text{BSM}} \otimes \hat{\sigma}_{\text{BSM}}$$

ANALYSIS SETTINGS

<u>Data</u>

- DIS & low-mass/on-shell DY data from NNPDF3.1
- Plus high-mass DY:

- LHC NC data: ATLAS 7, 8 TeV; CMS 7, 8, 13 TeV

- HL-LHC projections (later)

Theory: SM

• NNLO QCD + NLO EW

SMEFT

- *K*-factor approach, $d\sigma_{\text{SMEFT}} = d\sigma_{\text{SM}} \times K_{\text{EFT}}$
- Linear (dim-6) for \hat{W}, \hat{Y}
- Applied to DIS & DY

From Cameron Voisey's talk at HEFT2021

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021 - M. UBIALI

RESULTS: CURRENT DATA

- 95% CL bounds:
 - broaden by 15% (\hat{W}), 12% (\hat{Y})
- PDF unc. included:
 - becomes shrinking by 11% (\hat{W}), 13% (\hat{Y})

RESULTS: HL-LHC PROJECTIONS

- 95% CL bounds:
 - broaden by 940% (\hat{W}), 190% (\hat{Y})
- PDF unc. included:
 - broaden by 620% (\hat{W}), 110% (\hat{Y})
- Neglecting PDF-EFT interplay would lead to significant underestimate of uncertainty on EFT parameters

X SERIES OF MAJORANA LECTURES, PHYSICS DEPT, UNIVERSITY OF NAPLES "FEDERICO II" - 21 APRIL 2021 - M. UBIALI

RESULTS: HL-LHC PROJECTIONS

Using **SM PDFs** to find optimal reach leads to **significant underestimate of uncertainties** – **consistent treatment** suggests only **mild improvement versus current bounds**!

CONCLUSIONS

- Precision physics opens up new fascinating challenges
- Precise and accurate predictions are key to make progress in comparing theoretical predictions predictions to experimental data
- QCD precision physics helps direct searches and is essential for indirect searches
- A robust framework to globally interpret all subtle deviations from the SM predictions that might arise is uttermost needed.
- The terms precision and discovery have characterised the 10-year LHC legacy and will become even more predominant in the 20+ years ahead.

THANK YOU FOR YOUR ATTENTION!