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I. INTRODUCTION AND THE AIMS OF THESE LECTURE NOTES

In this short lecture course, I will aim to address two topics about two of the most

fundamental questions in cosmology, what is the universe made of, and what were

the initial conditions? We will study the leading theory of the early universe called

inflation, and primordial black holes, which are a dark matter candidate.

We will first briefly study the historical motivations for inflation, before understand-

ing how it can generate the initial density and temperature perturbations. Remarkably,

inflation does this by invoking quantum mechanics - the theory of the smallest scales

- and general relativity, to explain how the largest scale objects in the universe today
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are a consequence of physics on the smallest scales during the epoch of inflation. I will

sketch the calculation of how the initial perturbations were generated and how to re-

late them to the perturbations observed at much later times via the cosmic microwave

background and large-scale structure.

There are many pieces of evidence that the majority of gravitationally clustered

matter in the universe is non-baryonic (e.g. galaxy rotation curves, structure formation

and the bullet cluster), the so-called dark matter. Primordial black holes (PBHs) are

the unique dark matter candidate which does not invoke a new particle to explain

this, and instead invokes non-standard initial conditions to form black holes within a

second of the big bang and the end of inflation. Such non-standard initial conditions

are perhaps most likely generated by inflation, which is then required to generate a

much larger amplitude of perturbations on the small scales relevant for PBH formation

compared to the perturbations observed on larger scales where we have precision

observations. A study of PBHs therefore naturally relates to theories of inflation and

provides a window onto the early universe on smaller scales than can be probed by

any other means. Even if PBHs are only a negligible fraction of the dark matter, the

detection of even a single PBH would have major implications on our understanding

of the early universe, and current constraints on their existence are used to constrain

the physics of inflation.

The suggestion of PBHs predates inflation, but interest in them has never been

higher following the detection by LIGO of merging black holes through their gravitation

wave signature. Could some of those black holes be primordial?1

Either of these subjects could easily be the subject of a much longer lecture course. I

will therefore give only a summary of many of the details and derivations, with the goal

being to provide a practical and modern knowledge of both subjects, with references

being given to help you fill in the gaps. Because these are lecture notes, we are not

aiming to provide a comprehensive list of references and will instead focus on review

articles and books when possible. The emphasis will be on providing intuition and

understanding rather than technical details, while the workshops led by Philippa Cole

will be used to fill in some of the technical details and help build an understanding of

1 https://www.quantamagazine.org/black-holes-from-the-big-bang-could-be-the-dark-matter-20200923/

https://www.quantamagazine.org/black-holes-from-the-big-bang-could-be-the-dark-matter-20200923/
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some of the calculational techniques.

In these lectures I will use natural units where c = ~ = 1 unless otherwise stated,

and use the reduced Planck mass which is related to Newton’s gravitational constant

by M2
Pl = 1/(8πG).

II. A CRASH COURSE IN BACKGROUND COSMOLOGY

Although I will focus only on inflation and primordial black holes in these lectures,

some knowledge of cosmology at the level of the homogeneous and isotropic background

is essential before we can begin. If you have not studied much cosmology I highly

recommend the very readable text book “Introduction to Cosmology” by Barbara

Ryden which does not require any prior knowledge of general relativity.2 Isotropic

means that something looks the same in every direction, and this is true for the

observed universe, as is best evidenced from observations of the cosmic microwave

background. Homogeneous means the same everywhere, and 3D galaxy surveys confirm

that statistically, and on very large scales (scales larger than a cluster of galaxies) the

universe is homogeneous.

Although the universe today is very inhomogeneous on galactic scales, with large

structures having grown due to the power of gravitational attraction applied over

billions of years, the early universe was much closer to be homogeneous on all scales

which are large enough to be observationally probed today. Once again, the best probe

comes from observations of the temperature differences observable on the CMB, which

is the last scattering surface of cosmic photons which finally became free to travel

long distances through the universe about 400,000 years after the Big Bang shortly

after the background temperature/energy had reduced sufficiently to allow electrons

to bind to atomic nuclei in the epoch known as recombination,3 due to the large

number of high energy photons which could strip the electrons away from the (mainly

hydrogen and helium) nuclei. The density/temperature perturbations observed in the

CMB have a characteristic amplitude of a few parts per hundred thousand, showing

2
https://www.cambridge.org/core/books/introduction-to-cosmology/7E9E7C9C717570F1FFB3BA70F864A8FA

3 but which should really be called ‘combination’ since electrons and atomic nuclei had never been

bound before this time
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that the universe really was very close to being “smooth” at those times, and because

gravitational attraction acts to make the density perturbation amplitude grow with

time, it is essentially sure that the earlier universe (at least on the scales which can be

observed today) was even closer to being perfectly smooth.

Three key equations describe the evolution of a homogeneous and isotropic universe,

modelled in terms of the growth of the cosmic scale factor a(t) which relates physical

and comoving scales via

r(t) = a(t)x

where the comoving distance x between two comoving observers (those which are

comoving with the expanding universe) is constant, while the physical distance r(t)

grows proportionally with the growth of the universe. The three equations are the

Friedmann equation

H2 ≡
(
ȧ

a

)2

=
1

3M2
Pl

ρ− κ

R2
0a

2
, (II.1)

the fluid equation

ρ̇+ 3H (ρ+ P ) = 0, (II.2)

and the acceleration equation

ä

a
= − 1

6M2
Pl

(ρ+ 3P ) . (II.3)

The energy density is ρ(t), the pressure P (t), the curvature κ and radius of curvature

measured today is R0. As usual a dot denotes a derivative with respect to time.

These are three of the most important equations in cosmology, so they deserve some

explanation. I will not attempt to derive them, and a rigorous derivation requires a

reasonable background in GR. Perhaps the first thing to stress is that only two of the

three equations are independent, so it is possible (and a good exercise) to combine the

first two equations to derive the third one.

Because only two of the three equations written above to describe the evolution of

an FLRW universe are independent, we need a third equation to solve for the three

unknowns, a(t) (or equivalently H(t)), ρ(t) and P (t), even if we assume we know the
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value of the curvature. We need an extra ingredient, which is the equation of state of

the fluid(s) in the universe, i.e. a relationship of the form

P = ωρ, (II.4)

or, in practise, multiple such relationships if the universe has multiple components

contributing to the energy density. Note that this linear relationship is obviously not

the most general form of P (ε) possible, especially since we will assume ω is a constant

for each component. However, in practise, this simplifying assumption is perfectly

adequate for describing our real universe during most of its evolution, and it allows us

to make substantial analytical progress in solving the Friedmann equation and hence

determining how the different components of the universe evolved with time, and the

history of the Hubble parameter, etc.

We do not have time to derive the different properties of the different types of energy

components of the universe, but to briefly summarise, the important components after

inflation has ended are matter (which is pressureless, ωmat = 0), radiation (ωrad = 1/3),

curvature (ωκ = −1/3) and the cosmological constant (ωΛ = −1).

By solving the fluid equation, component by component, you can (quite straight-

forwardly) derive

εrad ∝ a−4, εmat ∝ a−3, εκ ∝ a−2, εΛ ∝ a0 = constant.

Hence in the future Λ will dominate because it cannot be diluted, while in the past

radiation must have dominated. In between, we will see that there was a long period

when matter dominated. It is not believed that the curvature was ever important,

except possibly before an epoch of inflation during the extremely early universe. But

that is a different story which we will come back to near the end of this module. For

now, it is important to note these results and that treating the universe as if it only had

one energy component is a useful exercise which provides a good approximation to the

expansion of the universe during significant time periods. We will go on to study such

cases, before considering the more complete and complex case of a multifluid universe.
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III. INFLATION

Cosmologists can probe the epoch of the cosmic microwave background (CMB)

from about 400,000 years after the Big Bang relatively directly by measurements of

the photons which last scattered when the CMB formed. Less directly we can keep

extrapolating back in time until about 1 second after the Big Bang, to the epoch of

Big Bang nucleosynthesis (BBN), and once again there is observational evidence that

the predictions made for the abundances of the light elements are correct, giving us

confidence that we understand the history of the universe back to a time when the

energy scale was above an MeV and when neutrinos started free streaming.

Going even further back in time is speculative, but there is good (albeit inconclusive)

evidence that much less than a second after the Big Bang there was a period when the

universe underwent accelerated expansion, popularly known as inflation. The three

classic (and original) pieces of evidence for a period of inflation were that it could

answer the following three riddles:

1. Why does the universe obey the cosmological principle, i.e. why is it homoge-

neous and isotropic? Although this minimal assumption has turned out to be

true, to the good fortune of cosmologists around the world, it is not easy to

explain why the CMB temperature on opposite sides of the sky, which should

never have been in causal contact, have nearly the same temperature.

2. Why is the universe so close to spatially flat? Since the effective energy density of

curvature dilutes like a−2 with the expansion, which is slower than both matter

and radiation, it seems surprising that it didn’t come to dominate the evolution

of the universe before dark energy, e.g. Λ, became important.

3. Why don’t we see any magnetic monopoles or other massive relics from the high

energy early universe? The basic issue is that if we keep extrapolating the laws

of physics back to ever higher energy scales, then it appears “likely” that stable

particles with a large mass would have formed in huge quantities. But such

particles have never been seen, so how did they evade detection?
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In most textbooks, the above three problems are presented one at a time, followed

by an explanation of what inflation is, and then a new list of how inflation solves

the three classic problems. In appendix A we instead discuss each ‘problem’ in order,

providing both more details of the challenge and how inflation offers a solution. The

reader familiar with the original motivations from inflation may skip this part.

More importantly, we will discuss how inflation is believed to have also generated

the primordial perturbations, which are observed as temperature perturbations on

the CMB sky. This is a remarkable story which potentially explains the origin of all

cosmological structures - including galaxy clusters which are the biggest objects in the

universe - as being due to quantum mechanical perturbations present during the brief

period of inflation. There could not be a grander story of mighty oaks growing from

tiny acorns than this one!

A. What is inflation?

The simplest answer is that inflation refers to an early period when the expansion

of the universe accelerated, meaning that ä > 0. Due to the cosmological constant Λ

(or more generally, dark energy), the universe also appears to be inflating now, but

at a vastly lower energy scale (recall how much the temperature and the energy of

the universe have decreased since BBN, and inflation must have occurred before BBN

since otherwise the abundance of the primordial elements such as hydrogen and helium

would have been diluted to nearly zero.

From the acceleration equation, (II.3), we can see that ä > 0 means that the total

equation-of-state parameter must satisfy

ω < −1

3
.

However, it turns out to be extremely difficult to get an extended duration of inflation4

unless the equation-of-state parameter satisfies ω ' −1, so we will use this as a practical

definition of inflation. The good news is that this means the Friedmann equations are

4 I do not mean that it lasts a long time, but rather that the universe grows by many orders of

magnitude. We will soon learn a good way to quantify the amount of expansion during inflation.
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quite straightforward to solve for such a scenario, because inflation means the universe

approximately behaves as if it was dominated by a cosmological constant. However,

inflation cannot be caused by a cosmological constant because the energy scale must

be greater than the energy scale of the universe at the time of BBN, which is a vastly

larger energy scale than the scale of dark energy/Λ today. During inflation the scale

factor grows at an exponential rate,

a(t) ∝ eHinf t. (III.1)

When discussing how much inflation is needed to fix the horizon, flatness and

monopole problems, the question is not how long (in nano seconds, or any other units)

inflation lasted, but rather by how much the scale factor grew during inflation, when

ω ' −1. A common and convenient measure of this growth is the efolding number,

where 1-efolding means that the universe has grown by a factor of e ' 2.72, 2-efoldings

mean by a factor of e2, and in general N-efoldings mean by a factor of eN . The total

number of efoldings of inflation is defined to be

Ninf ≡ ln

(
ainf,end

ainf,initial

)
= Hinf(tinf,end − tinf,initial), (III.2)

where the equality follows from (A.11). By defining the duration of inflation in terms

of the growth of the scale factor, we remove the degeneracy between the (unknown)

energy scale of inflation (which is related to Hinf) and how long (in time) inflation took

place.

1. Length scales and the comoving Hubble scale

We will soon go on to calculating properties of the perturbations generated during

inflation. An important concept for this calculation will be the horizon scale, which is

related to the Hubble scale and Hubble time. The full units for the Hubble constant

measured today are the weird sounding km/s/Mpc, so it has units of inverse time

and the Hubble time 1/H gives an estimate for the age of the universe. The Hubble

distance, c/H is the distance that light can travel in one Hubble time, making it a

good estimate for the ‘scale of causal interactions’ as a function of time. Recalling that
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physical scales are related to a comoving scale by a factor of a and that we are using

units with c = 1, we can deduce that the comoving Hubble scale is given by

1

aH
. (III.3)

During inflation H ' constant and hence 1/(aH) ∝ 1/a. During radiation domination

a ∝ t1/2, H ∝ 1/t and therefore 1/(aH) ∝ t1/2 ∝ a while during matter domination

a ∝ t2/3, H ∝ 1/t and therefore 1/(aH) ∝ t1/3 ∝ a1/2. The evolution of the comoving

Hubble scale as a function of efolding number N = ln(a) is shown in Fig. 1. Notice

that even though the universe is today dominated by the cosmological constant, this

has only become dominant in very ‘recent’ times when time is measured on a log scale.

Because it is normal to measure the statistical properties of the primordial density

perturbations in terms of the power spectrum in Fourier space, it is normal for

cosmologists to talk about ‘length’ scales in terms of the comoving wavenumber

k ∼ 1/(comoving length) which is often measured in units of inverse megaparsecs

(Mpc−1). Notice that large values of k corresponds to small scales, and vice versa. An

important concept for calculations of inflationary perturbations is whether the length

scale is smaller or larger than the comoving Hubble scale, with perturbations on length

scales which are larger than the comoving Hubble scale being called super-Hubble or

super horizon. This corresponds to k < aH while a sub-Hubble mode satisfies k > aH.

The mode crosses the Hubble scale when k = aH. As shown by Fig. 1, modes start

off inside the Hubble scale, then exit during inflation and later re-enter the Hubble

scale after inflation ends, with larger scale modes (corresponding to smaller values of

k) exiting earlier and re-entering later than small scale modes. For reasonable choices

of the inflationary energy scale, the number of efoldings from when our observable

horizon exited during inflation until the end of inflation is between 50 and 60 [1].

B. What could cause inflation?

We will start by considering a single-scalar field φ with a potential energy given by

V (φ). Because the background universe was close to being homogeneous and isotropic,

we will make the assumption that the background inflaton field only depends on time
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FIG. 1. The evolution of the comoving Hubble horizon as a function of N = ln(a), showing

how modes (with a constant comoving length) become super-Hubble (k < aH) during inflation

and then re-enter the horizon after inflation has ended when 1/(aH) grows. The possibility of

an early epoch with zero pressure during the time when the inflaton field decays into radiation

is also shown and labelled as ‘reheating’. This plot is taken from [1].

but is spatially invariant, hence φ = φ(t). The energy density and pressure of this

field5 are

ρφ =
1

2
φ̇2 + V (φ), (III.4)

Pφ =
1

2
φ̇2 − V (φ), (III.5)

so we can see that the background equation-of-state parameter will be close to that of

a cosmological constant, w ' −1, whenever the potential energy dominates over the

kinetic energy of the field, i.e. if

V (φ)� 1

2
φ̇2. (III.6)

Having an equation of state close to −1 means that the background density is only

reducing very slowly, with the ‘extreme’ case of ω = −1 corresponding to a constant

background energy. A good way to parametrise how quickly the background energy is

5 This comes from the energy-momentum tensor of general relativity
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diluting is via the slow-roll parameter

εH ≡ −
Ḣ

H2
, (III.7)

and with a bit of algebraic manipulation using the (flat) Friedmann and acceleration

equations we can write this in terms of the equation-of-state parameter as

εH = − 1

H2

ä

a
+ 1 =

3M2
Pl

ρ

1

6M2
Pl

(ρ+ 3P ) + 1 =
1

2
(1 + 3ω) + 1 =

3

2
(1 + ω). (III.8)

From the acceleration equation we can see that ä > 0 if ω < −1/3, and therefore

acceleration (which is the definition of inflation) corresponds to εH < 1. The commonly

considered case of ω ' −1 corresponds to εH � 1.

C. Slow-roll inflation

We will now consider in more detail how to describe the (background) motion of a

scalar field which causes inflation. The background equation of motion for such a field

in an expanding background is given by6

φ̈+ 3Hφ̇+ V ′ = 0, (III.9)

where the overdots refer to time derivatives and the prime denotes a derivative of

the potential with respect to the inflaton field, φ. The middle term represents the

‘Hubble friction’ caused by the expansion of the universe, which would be zero if the

background was static.

Taking the time derivative of the Friedmann equation for a scalar field in a flat

background

H2 =
1

3M2
Pl

(
V +

1

2
φ̇2

)
, (III.10)

⇒ 3M2
Pl × 2HḢ = V ′φ̇+ φ̇φ̈ = φ̇

(
V ′ − (3Hφ̇+ V ′)

)
= −3Hφ̇2 (III.11)

where we used the equation of motion (III.9) and hence we can rewrite the slow-roll

parameter (without making any approximation) as

εH ≡ −
Ḣ

H2
=

φ̇2

2H2M2
Pl

. (III.12)

6 A derivation of this result goes beyond the scope of this course, but can be derived by applying the

Euler-Lagrange equation to the action of the scalar field.
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It should not be difficult to convince yourself that this slow-roll parameter is therefore

measuring the ratio of the kinetic and potential energies (up to order unity numerical

factors) and hence inflation will occur when the kinetic energy is subdominant, as we

had previously shown in another way.

There are a huge number of ways of parametrising and classifying the slow-roll

conditions. At lowest order in slow roll, two commonly used parameters are

εV =
M2

Pl

2

(
V ′

V

)2

, (III.13)

ηV = M2
Pl

V ′′

V
, (III.14)

where the primes imply differentiation with respect to the inflaton field φ. The slow-roll

conditions imply that

εV ' εH � 1 , |ηV | � 1, (III.15)

and one can show that these approximations are equivelant to dropping the following

terms from the equations governing the evolution of the inflaton field

��AAφ̈ + 3Hφ̇+ V ′ = 0 (III.16)

H2 =
1

3M2
Pl

(
V +

�
��S
SS

1

2
φ̇2

)
(III.17)

which results in the simplified slow-roll equations (which can be solved analytically for

some simple choices of V (φ))

3Hφ̇ ' −V ′ 3H2M2
Pl ' V. (III.18)

D. Perturbation generation

The reason for the continued interest in inflation 4 decades after it was first

suggested has little to do with its ability to solve the classic horizon and flatness

problems and is almost all to do with its ability to also generate the primordial

perturbations. The story of how this works is quite complex and wonderful, with

the basic idea being that the quantum mechanical uncertainty principle means that

the inflaton field - and hence the universe - cannot become completely smoothed out by



14 C. T. Byrnes: Inflation and PBHs

inflation, with quantum mechanical perturbations (which are normally only relevant

on really tiny scales) becoming also important on large, classical, scales due to the

quasi-exponential expansion of the universe which rapidly makes small scales grow

into large scales. We won’t attempt to derive the quantum mechanical perturbations

in these lectures, but simply state the results and give some explanations. For a

detailed treatment, see e.g. ‘The primordial density perturbation’ textbook by Lyth

and Liddle.

The relevant energy scale of inflation is given by the Hubble parameter7 and it is

not so surprising that the typical amplitude of the scalar field perturbations (δφ) as

well as the metric (tensor) perturbations (h) are both linearly proportional to H, but

a derivation of this important result goes beyond the scope of these lectures.

More precisely, we may write the power spectrum amplitude of the scalar (inflaton)

and tensor (T) perturbations at horizon crossing during inflation as

Pφ,∗ =

(
H∗
2π

)2

, PT,∗ =
8

M2
Pl

(
H∗
2π

)2

. (III.19)

How do the δφ power spectrum relate to the observed temperature perturbations,

∆T/T? It turns out in quite an indirect manner. The quantity which is closely related

to observations is rather the dimensionless curvature perturbation8

R =
H

φ̇
δφ =

1

MPl
√

2εH
δφ ' V ′

V
δφ ' δV

V
' δρ

ρ

and hence the power spectrum of R measured at horizon crossing is given by

PR,∗ =
1

2M2
PlεH,∗

(
H∗
2π

)2

, (III.20)

where H and εH should be evaluated at horizon crossing when k = aH, but this time

(or equivelantly scale) dependence is often not shown explicitly.

7 You may point out that the dimensions of the Hubble parameter are actually time−1 which is true,

but in natural units time (and length) scales are both the inverse of mass and energy scales.
8 I am skipping lots of details here, including the issue of gauges. The perturbed quantity δφ is a

gauge dependent quantity but it turns out that R is gauge independent, provided that it is defined

carefully. There also exist numerous definitions and sign conventions for the curvature perturbation,

which is often also denoted by ζ, called ‘zeta’.
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E. Observational tests of inflation

The CMB temperature perturbations have been measured to high accuracy over

three decades in length scales, with the best constraints on most scales coming from

the Planck satellite. Although the spectrum looks complicated, it is a remarkable fact

that the statistical properties of the CMB map, which consists of about 10 million

pixels, can be parametrised in terms of a primordial power spectrum which has only

two free parameters,

PR = As

(
k

kpivot

)ns−1

, (III.21)

where the pivot scale is chosen to be in the ‘middle’ of the range of data which can be

constrained9, As ' 2 × 10−9 is the amplitude of the primordial power spectrum and

ns − 1 is the spectral index, with ns = 1 corresponding to a scale-invariant spectrum

because this would imply that PR would be independent of k. Observations favour

ns ' 1 but exact scale-invariance has been ruled out with high significance.

Given the definitions of H, the slow-roll parameters, and using k = aH, you can

check (and this is a good exercise to do so - beware it is easy to get the second relation

wrong by an overall minus sign) that

d lnH2

d ln k
= −2εH (III.22)

d ln εV
d ln k

= 2εV (2εV − ηV ) (III.23)

and hence to leading order in slow roll (which means we can approximate εH = εV ) we

find the following, very useful result for the spectral index

ns − 1 ≡ d lnPR
d ln k

= −6εV + 2ηV , (III.24)

where the slow-roll parameters should be evaluated around the time when the pivot

scale kpivot = aH during inflation, which corresponds to 50-60 efoldings before the end

of inflation, as discussed in section III A 1. Although the slow-roll parameters vary

slowly-during slow-roll inflation and hence are normally essentially constant while the

9 note that this is not a free parameter of the model.
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decades of observable length scales cross the (comoving) Hubble scale, they do normally

vary significantly during 50 efolds of inflation.

This is an incredibly useful formula. It means that for any single-field slow-roll

model of inflation, you can determine the scale dependence of the primordial power

spectrum in terms of the derivatives of the potential with respect to the scalar field and

nothing more than that. This normally makes the calculation quite straightforward.

One does however need to know for which value of the field to determine the derivative.

We can find the relation by starting with the formula N ∝ Ht during inflation, and

we will use t∗ to denote the time when k equals the comoving Hubble scale, k = aH,

while te denotes the end of inflation. We therefore have

N =

∫ te

t∗

Hdt =

∫ φe

φ∗

H

φ̇
dφ ' 1

M2
Pl

∫ φ∗

φe

V

V ′
dφ, (III.25)

where one needs to use the slow-roll equations of motion in order to get to the final

result. It is often a good approximation to use φ∗ � φe for values of N � 1.

The amplitude of the primordial tensor perturbations is often quoted as a ratio

compared to the amplitude of the scalar perturbations, with the tensor-to-scalar ratio

defined as

r ≡ PT
PR

= 16εH . (III.26)

Although this quantity also depends on scale (and should again be evaluated at horizon

crossing) because εH varies slowly and r is constrained to be small but has not been

detected, the mild scale dependence of r is normally not important.

The Planck constraints on inflation have determined that

ns − 1 = 0.965± 0.004, r . 0.1

while the addition of ground based data from Bicep-Keck strengthens the constraint

on the tensor-to-scalar ratio to be r < 0.044 at the 95% confidence level [2]. This

implies that εH ' εV < r/16 . 0.003 and therefore we can see from the formula for

the spectral index, (III.24), that it deviates too far away from being scale-invariant

for the deviation to be due to the ε slow-roll parameter, and hence the data requires
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FIG. 2. The constraints on the two slow-roll parameters showing the 1 and 2-σ confidence

levels. The red contours are based on the Planck data alone, while the tighter blue contours

also include Bicep-Keck data. Notice that the addition of the Bicep-Keck data, which tightens

on the constraint on r by about a factor of 2 is required in order to conclude that ηV < 0. This

figure is taken from [2].

ηV < 0, which implies that V ′′ < 0. The observational constraints on εV and ηV are

shown in Fig. 2. This demonstrates that even with such a limited number of non-zero

inflationary parameters we can deduce something very non-trivial about the inflaton

potential. However, all of this analysis has been made assuming the simplest case of

single-field slow-roll inflation.
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Lecture 2

IV. ULTRA SLOW-ROLL INFLATION

Recall the equation of motion for the inflaton field

φ̈+ 3Hφ̇+ V ′ = 0, (IV.1)

where the prime in this equation refers to a derivative with respect to φ and the dot

refers to a derivative with respect to (cosmic) time. The normal SR approximation is

to drop the φ̈ term and hence turn the second order equation of motion into a (much

simpler) first-order equation, giving the result 3Hφ̇ ' −V ′. This approximation is

normally valid provided that εV � 1 ⇒ V ′ �MPlV , but not always.

What happens if V ′ = 0? Then the SR approximation would say that φ̇ = 0

implying that the field is not rolling at all. This does not imply that inflation has

ended, rather the opposite. If the inflaton field is not at the bottom of the potential

then the field will not move again and hence the universe is dominated by the potential

energy of the inflaton field, which at least classically is the same as a cosmological

constant and hence this gives rise to de Sitter expansion which is eternal in the future

(called eternal inflation). We clearly do not live in such a universe.

However, if V ′ = 0 then it would be wrong to neglect φ̈ in comparison to V ′, and

we should instead study the following equation of motion:

φ̈+ 3Hφ̇ = 0. (IV.2)

This is often described as the equation of motion for ultra-slow-roll (USR) inflation.

Why USR? Because the field velocity decreases extremely quickly during USR inflation.

We can solve (IV.2) by using the substitution v = φ̇ and recalling H = ȧ/a to find the

solution

φ ∝ a−3 ∝ e−3N (IV.3)

which shows that the kinetic energy (KE) decreases like

KE ∝ φ̇2 ∝ a−6.
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Hence the potential energy very quickly dominates over the KE, but φ̇ remains

important both in order to get the inflaton past the flat part of the potential in order

to avoid eternal inflation and also in order to calculate the inflaton perturbations.

Note that the first slow-roll parameter

εH =
φ̇2

2M2
PlH

2
∝ a−6 � 1 (IV.4)

is small and rapidly decreasing during inflation, which implies that H is very close to

constant. In contrast, εV = 0 precisely if V ′ = 0, so whilst both versions of the epsilon

slow-roll parameter are small during USR inflation, they do not have the same order

of magnitude or time dependence. Hence, unlike in SR inflation, one cannot use them

interchangeably.

We now introduce a “second” slow-roll parameter which measures how quickly εH

varies with time,

η ≡ ˙εH
Hε
'

dεH
dN

εH
(IV.5)

where we have used N ' Ht to get to the final equality, which is valid during inflation.

We can hence see the important results η ' 0 during SR inflation while η ' −6 during

USR inflation.

In Fig. 3 we show an example of a potential which has an inflection point. USR

inflation will occur while the inflaton field traverses the inflection point and for a brief

period either side of the inflection point.

A. The amplitude of the perturbation

The standard formula for the amplitude of the perturbations generated during

single-field slow-roll inflation is

PR =
H2

8π2M2
Plε

. (IV.6)

It turns out that this remains partially true even when USR inflation occurs (only

partially because it is not valid on all scales), but subject to some very important

caveats. As we will see later, during USR inflation the perturbations do not freeze out
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FIG. 3. An example of an inflaton potential that includes an inflection point. This plot is

taken from a review article about PBHs [3].

at horizon exit, and hence the formula cannot be evaluated at horizon crossing but

rather only after USR inflation ends. Another key difference is that while SR inflation

implies that εV ' εH and hence you can choose to use either definition of ε, during

USR the two become extremely different and indeed εV = 0 if V ′ = 0, but this does not

imply that P → ∞. In the formula for the power spectrum, (IV.6), must be evaluated

using ε = εH .

Recalling that ε ∝ a−6 during USR inflation we can see that PR ∝ e6N during USR

inflation since H is very close to constant, i.e. the perturbations (at least on some

scales) grow very rapidly during USR inflation. This should make it clear that USR

inflation cannot last very ‘long’, i.e. for a large number of efolds of inflation, because if

it did then PR → 1 would be reached at which point perturbation theory breaks down

since the perturbations are no longer small.

More seriously, PR → 1 also corresponds to the onset of eternal inflation, because

this is when √
PR ∼

H√
ε
∼ H

∆φ
∆N

∼ 1

which means that the quantum fluctuations of the field – which have amplitude

δφ ∼ H – have the same magnitude as the distance which the inflaton field will (at
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the background level) roll down the potential during 1 efold of inflation, ∆φ ∼ H∆N .

At this point the inflaton field is about as likely to quantum mechanically “jump” up

the potential (meaning that it moves backwards towards the starting point) as it is

to continue moving towards the minimum of the potential where inflation can end.

Hence inflation will never end (at least not in all locations) and this corresponds to

the regime of eternal inflation.

Key messages:

1. You have to be very careful calculating the perturbations during USR inflation

2. An inflection point can lead to eternal inflation: It is then important to check is

that the inflaton field has enough kinetic energy to get past the flat part of the

potential and avoid eternal inflation

3. If V ′ 6= 0 exactly then USR inflation normally won’t last long, because φ̇ is

decreasing so quickly and hence slow roll with 3Hφ̇ ' V ′ will typically be quickly

reached.

The (quasi) scale invariance of the perturbations generated during inflation is often

intuitively explained as being a consequence of the (quasi) time translation invariance

of the quasi de Sitter space expansion caused by inflation. Whilst these things do

correspond to H ' constant and hence both δφ and the tensor perturbations are nearly

scale invariant, the scale invariance of the curvature perturbation is not guaranteed.

During SR inflation the near constancy of ε does obviously imply from (IV.6) that the

curvature perturbations are also nearly scale invariant, but when εH varies then scale

invariance is normally lost. However, and quite remarkably, USR inflation can give

rise to a scale-invariant spectrum of perturbations as well.

Warning: Do not confuse the time dependence with the scale dependence of the

primordial curvature perturbations during USR inflation. We can only observe (at

best) the scale dependence of the primordial power spectrum, evaluated after inflation

has ended. For purely SR inflation it is enough (and much simpler) to just evaluate the

primordial power spectrum at the time when modes exit the horizon during inflation,
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because the perturbations thereafter have a constant amplitude. During USR inflation

this is not true, for reasons which will be explained in the next subsection.

B. USR perturbations on large scales

We will now study more quantitatively the evolution of the curvature perturbation,

by starting with (but not deriving) its equation of motion. This is most conveniently

written and solved in terms of conformal time τ ,10 which is related to cosmic time by

the scale factor as

adτ = dt.

The name “conformal time” comes from the fact that the scale factor a(t) becomes a

conformal (overall) factor of the Friedmann-Le Maitre-Robertson-Walker metric when

written in terms of this time coordinate. This is true for any global geometry (flat,

closed or open) but specialising to the flat case for simplicity we can see this explicitly

from

ds2 = −c2dt2 + a2(t)

3∑
i=1

dx2
i (IV.7)

= a2(τ)

(
−c2dτ2 +

3∑
i=1

dx2
i

)
. (IV.8)

In terms of conformal time, the equation of motion of the curvature perturbation,

R(k) ≡ Rk, is

∂2Rk
∂τ2

+ 2
∂z
∂τ

z

∂Rk
∂τ

+ k2Rk = 0, (IV.9)

where

z2 = 2a2M2
PlεH . (IV.10)

In the k → 0 limit one can find a partially analytic solution by first substituting

vk = ∂Rk/∂τ , solving for vk and then integrating, with the general solution (which is

10 Conformal time is just as often called η in the literature, but I am already using η for one of the

‘SR’ parameters.



Theoretical aspects of Astroparticle Physics, Cosmology and Gravitation - GGI 2020 23

written in terms of two k dependent constants that depend on the initial conditions)

to be

Rk→0 = Ck +Dk

∫ τ dτ ′

a2εH
(IV.11)

= Ck +Dk

∫ t dt′

a3εH
. (IV.12)

The constant mode Ck corresponds to the usual constant mode, while Dk corresponds

to the mode usually called the decaying mode. During SR inflation ε ' constant and

hence the decaying mode does decay like a−3, showing that in this case Rk does indeed

freeze out at around the time of horizon crossing, after which k � aH.11 For constant

values of η it is straightforward to show that ε ∝ aη and therefore the “decaying” mode

will in fact grow for η ≤ −3. In particular, during USR inflation we have η = −6 and

therefore

Rk ∝ Dk

∫ t

dt′a3 ∝
∫ t

dt′e3Ht′ ∝ e3Ht ∝ a3, (IV.13)

where we have used the fact that a ∝ eHt during inflation. Hence we see that the

power spectrum during USR inflation grows like

PUSR
R ∼ R2

k ∝ a6

as we had previously argued it must based on (IV.6) and the behaviour of εH ∝ a−6

during USR inflation.

End of lecture 2

11 Note that while this statement is true, this has not been shown rigorously - like many steps in these

lecture notes - because we have only solved (IV.9) for k = 0 rather than finding the general solution

and then taking the k → 0 limit.
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V. PRIMORDIAL BLACK HOLES

Lecture 3 will be held using slides and a pdf copy of those slides will be

made available

Note that Laura Covi covered the observational evidence for the existence of a

substantial fraction of the energy budget of the universe today consisting of cold

dark matter in her lectures at the same school,12 so I will not repeat that here. I

will advertise though that the special nature of primordial black holes (PBHs) as a

dark matter candidate is that they uniquely do not require the existence of any new

particle. They are also (by far) the most massive dark matter candidate, being the

only candidate I am aware of whose mass is larger than the Planck mass. We will

see later that the main window for PBHs to make up all of the dark matter is if they

have roughly asteroid mass, but it might be possible that PBH Planck mass relics are

the dark matter. Furthermore, PBHs with almost any mass could make up a small

fraction of the total dark matter, and there is no observational evidence for or against

a mixed dark matter model with multiple components of dark matter.

It is important to realise that the evidence for dark matter does not just come from

observations of the ‘late’ universe, such as the observations of galaxy clusters, galactic

rotation curves and the bullet cluster, but also from the growth of perturbations

between the time when the CMB formed and the time of the first galaxies as well as

consistent measurements of the baryon-to-photon ration from the time of BBN about 1

minute after the Big Bang and the CMB formation about 400,000 years later. Hence,

dark matter must have already existed during the early universe before BBN took

place and this proves that ‘stellar’ black holes which form from the collapse of stars

are not a viable DM candidate. However, PBHs form very early (we later determine

the relation between their mass and formation time) and hence PBHs in certain mass

ranges could be the DM.

12 https://agenda.infn.it/event/24368/page/5548-scientific-program
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Lecture 4

A. PBH formation

Recall the discussion in section III A 1 about the comoving Hubble scale 1/(aH).

Modes with a constant comoving length scale ∼ 1/k are initially smaller than the

comoving Hubble scale but this changes when k = aH and they later have a longer

wavelength than the comoving Hubble scale, meaning that k < aH until after inflation

ends and the comoving Hubble scales starts to grow. While k < aH the mode is

described as being ‘super-horizon’ or ‘super-Hubble’, and after inflation ends the modes

will at some point ‘re-enter’ the horizon when k = aH again. The significance of

horizon entry is that this time corresponds to when the corresponding horizon scale

comes into causal contact, i.e. the time when information travelling at the speed of

light can travel across the comoving scale 1/k = 1/(aH) in one Hubble time, 1/H.

PBH formation is a causal process. Gravity (which travels at the speed of light)

needs to communicate the existence of an overdensity in order for gravitational collapse

to begin. Therefore, a PBH of scale 1/k cannot form while k < aH. The horizon scale

is a key concept in PBH formation. PBHs form with a mass comparable to the horizon

mass MH , which means that there is an approximate 1-2-1 relation between the PBH

mass MPBH ∼ MH and k and time. We know that before matter domination began

about 50,000 years after the Big Bang the universe was radiation dominated, and

that it was radiation dominated at the time of BBN when the primordial elements

(mainly hydrogen and helium) were formed about a minute after the Big Bang. At

even earlier times we cannot be sure but in the standard model of cosmology the

universe was radiation dominated at even much earlier times from shortly after the

time when inflation ended and the inflaton field reheated the universe by decaying

into radiation.13 The horizon mass at the time of radiation-matter equality was an

enormous MH = Meq ∼ 1016M� and we will therefore focus on PBH formation during

radiation domination during these lectures, when the horizon mass was smaller.

13 For a review article about the equation of state of the early universe see [4].
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The background pressure is very large during radiation domination, P = ωρ =

ρ/3, meaning that only large amplitude perturbations will have a strong enough

gravitational attraction to overcome the pressure forces and collapse into a black hole.

The typical amplitude of the density perturbations on CMB scales is

δ =
δρ

ρ
∼ R ∼

√
PR ∼

√
As ∼ 5× 10−5,

which is far too small to lead to PBH formation. To form a PBH we instead need

δρ/ρ ∼ 1 at the time of horizon entry and hence PBH formation requires special initial

conditions. If the spectral index satisfies ns − 1 ' 0 on all scales then the power

spectrum will also be small on all scales and hence zero PBHs will form.14

The original estimate for the collapse threshold for PBH formation was made by

Bernard Carr in 1975 (while he was Hawking’s PhD student) using the Jean’s length

and time and using Newtonian gravity, who found that an overdensity would collapse

if

δ ≡ δρ

ρ
|k=aH > δc = c2

s, (V.1)

where cs is the sound speed of perturbations, which is an important quantity because

this determines how quickly a pressure wave caused by the overdensity can travel from

the centre to the edge of the perturbation. During radiation domination, cs = 1/
√

3

so δc = c2
s = ω = 1/3. Both one-dimensional, and even recent three-dimensional GR

simulations have shown that

δc ' 0.45, (V.2)

which is quite close to Carr’s original estimate, and they have also shown that the

collapse threshold has only a mild dependence on the initial density profile. However,

(V.1) does not remain accurate in the limit of a matter dominated universe with cs → 0

because his estimate assumed the initial overdensity was spherically symmetric. Whilst

this is a good approximation for rare peaks in the density field [6], this is not valid for

small values of cs.

14 Note that there are other mechanisms which could form PBHs, for example the collisions of cosmic

strings. However, all of these alternatives require new (beyond the standard model) physics to form,

and we won’t consider them further. For a brief review see [5].
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We would now like to estimate the amplitude of PR which can generate an

‘interesting’ number of PBHs. As is normal for models of DM production, we only

need a tiny fraction of the total energy density to be in the form of PBHs at the time

of PBH formation in order to get a significant fraction of the DM to consist of PBHs,

where this fraction is normally parametrised by

fPBH ≡
ρPBH

ρDM
, (V.3)

where fPBH = 1 means that all of the DM is made out of PBHs and therefore DM

would not be a new particle.

During radiation domination ρtot = ρrad ∝ a−4 while after formation ρPBH ∝ a−3

and therefore the PBH fraction ρPBH/ρtot grows proportional to the scale factor a

from the time of formation until matter-radiation equality. Denoting the fraction of

the universe’s energy density in PBHs at the time of formation as β, we therefore have

fPBH =
ρPBH

ρDM
|0 '

ρPBH

ρtot
|eq '

aeq

aform
β. (V.4)

PBH formation is ‘fast’ because the initial over density is so huge, unlike galaxy

formation which takes billions of years because they form from a tiny initial overdensity

with δinitial ∼ 10−4. PBH formation takes about ten Hubble times, meaning that the

collapse occurs at a time 10/Hk=aH where 1/Hk=aH is the Hubble time when the

mode re-entered the horizon. Notice that this corresponds to the universe growing by

only about e-folding during radiation, because a ∝ t1/2 during this time and therefore

∆NPBH formation ∼ ln(10)/2 ∼ 1. We can therefore approximate the time of PBH

formation as being equal to the time when the mode of the overdensity which will

form the PBH re-enters the horizon, i.e. the time when k = aH.

As stated before, the PBH mass is comparable to the horizon mass at the time of

formation, so

MPBH ∼MH = ρV =
4

3
πρ

(
1

H

)3

∝ ρ−1/2 ∝ a2 ∝ t (V.5)

where it is important to realise we used the physical (not comoving) Hubble scale 1/H

as an estimate of the radius of the volume V and we also used H2 ∝ ρ ∝ a−4 to derive

some of the relations in the above equation. Note that MPBH ∝ a2 rather than a3
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because the density is decreasing while the horizon volume increases. Inserting the

numerical factors one can find

MPBH =

(
aform

aeq

)2

Meq '
(
aform

aeq

)2

1016M�, (V.6)

MPBH ∼ 1015g
t

10−23s
. (V.7)

The reason why the mass to formation time is often written in the form seen above15 is

because PBHs with an initial mass of 1015g will be evaporating today due to Hawking

evaporation of the black hole, while those which form with a smaller initial mass will

have already evaporated completed and we can neglect the impact of Hawking radiation

for BHs those which form with a significantly larger initial mass.

In terms of the comoving wavenumber k measured at horizon entry after inflation,

k = aH ∝ t1/2 ∝ a−1 ⇒ MH ∝ k−2 (V.8)

and inserting numerical factors leads to

MPBH 'MH ∼ 1013M� k
−2 Mpc2. (V.9)

For the case of a solar mass PBH, MPBH = M� = 2× 1033g, we can make order of

magnitude estimates that they form when

k ∼ 107Mpc−1, t ∼ 10−6s, aform ∼ 10−8aeq. (V.10)

The corresponding energy at this time is about 200 MeV which corresponds to the time

of the QCD transition when quarks bind into hadrons. We will see the significance of

this coincidence later. Because aform ∼ 10−8aeq only 10 parts per billion of the universe

needs to be in the form of PBHs at the formation time (i.e. β ∼ 10−8) in order for all

of the DM to be made out of solar mass PBHs.

B. Estimating the collapse fraction β

The easiest method is to use the Press-Schechter formalism, in which the collapse

fraction of the universe into PBHs at the time of formation (or horizon entry of the

15 For example, see the very first equation in the PBH review article by Green and Kavanagh [7].
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relevant mode) is estimated by calculating the fraction of the universe with δ > δc,

β(MPBH) =
ρ(MPBH)

ρtot
|formation =

∫ ∞
δc

P (δ)dδ, (V.11)

where P is the pdf, not to be confused with the power spectrum.

For simplicity in these lectures, we will assume R = δ and hence they have the same

power spectrum, although we caution that this is not a very accurate approximation.

Technically one should also use a window function to smooth the density contrast δ

on the scale of PBH formation, R ∼ 1/k, whose variance is related to the primordial

power spectrum of the density contrast by

σ2(R) =

∫ ∞
0

W̃ 2(kR)Pδ(k)d ln k, (V.12)

where W̃ is the Fourier transform of a real space window function and Pδ(k) is the

dimensionless power spectrum of the dimensionless density perturbation.

For simplicity we will neglect these complications and instead use

σ = PR

as a rough estimate. Then if we assume that the perturbations are Gaussian distributed

with variance σ2, and using the fact that β � 1, we can make an asymptotic expansion

in the limit δc/σ � 1 to show that

β ' 1

2
erfc

(
δc√
2σ

)
' σ√

2πδc

e−δ
2
c/(2σ

2). (V.13)

As a very rough estimate, we can invert this to estimate

PR ∼ σ2 ∼ δ2
c

ln(1/β)
∼ 0.2

ln(1/β)
. (V.14)

Notice that PR is only logarithmically sensitive to β, whilst instead β is exponentially

sensitive to the power spectrum amplitude. Hence, relatively small changes to δc, or

the relation between R and δ, or changes to the choice of the window function all lead

to exponentially large changes in β. Normally such changes are unimportant, despite

appearing to change the answer by orders of magnitude.
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Consider again the case of solar mass PBHs and assuming that fPBH = 1, it is

straightforward to estimate that the required power spectrum amplitude is

PR ∼
0.2

ln(108)
' 0.011 ∼ 10−2. (V.15)

For much smaller PBH masses the relevant values of β also become much smaller

(due to the longer period of expansion between PBH formation and radiation-matter

equality). The tightest observational constraint on β is β . 10−28 for MPBH ∼

1015g [8], i.e. the PBH initial mass which corresponds to them decaying today and

hence having a large observational signature through Hawking radiation. How much

impact does this twenty order-of-magnitudes tighter constraint have on the consequent

constraint on the power spectrum amplitude? The answer is not much, only by a

factor of 28/8 = 3.5. Hence the range of power spectrum amplitudes which are of

interest for PBH formation is quite limited, lying in the range PR ∼ 10−3 − 10−2,

independently of the PBH mass and for any potentially observable value of fPBH.

However, primordial non-Gaussianity or an early matter dominated epoch can strongly

change the constraints on the power spectrum amplitude, but a study of these topics

goes beyond the scope of these lectures.

How sensitive are these results to changes in the collapse threshold δc? Phrased in

terms of β the answer appears to be huge, for example if σ2 = 3 × 10−3 (the value

relevant for the formation of PBHs which are decaying today) then

β(δc = 1/3)

β(δc = 0.45)
' 10−6.

However, the change in the value of PR required to get a particular value of β, is only

σ2(δc = 1/3)

σ2(δc = 0.45)
' 0.332

0.452
' 0.5.

Authors of PBH papers like to phrase the difference in terms of β in order to make the

importance of their results exponentially large, but in reality, this normally overstates

the importance of the change.

One exception is during the QCD transition when the equation-of-state parameter

ω drops from 1/3 to 0.25, about a 25% reduction, at the time when the horizon mass

is one solar mass [9]. This reduction in the background pressure makes PBH formation
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‘easier’, and the collapse threshold drops from δc = 045 to δc ' 0.4, a reduction by

about 10% [10]. This relatively small reduction leads to a 2–3 orders-of-magnitude

enhancement in the production of solar mass PBHs compared to the number of PBHs

on similar mass scales where ω = 1/3 and δc = 0.45, provided that the amplitude

of the primordial power spectrum is sufficiently large and constant over the relevant

range of scales. This mass range is of special interest both because they are below the

Chandrasekhar mass (about 1.4 solar masses) which is the smallest mass with which a

compact object (a neutron star or BH) can form in the late universe through standard

astrophysical processes and also because this mass range can be probed by ground

based gravitational wave detectors such as the current LIGO and Virgo instruments.

The observation of a sub solar-mass compact object would be a smoking gun signature

for a PBH and the detection of even just one such object would have huge implications

for our understanding of dark matter and the physics of the very early universe.
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Lecture 5

VI. OBSERVATIONAL SEARCHES FOR PBHS

When studying PBHs as a DM candidate the constraints are normally best phrased

in terms of fPBH but for PBHs which are currently evaporating, or which have already

evaporated it is normal to use constraints in terms of the initial collapse fraction β.

Recall that neglecting accretion and evaporation the two are related by

fPBH '
aeq

aform
β (VI.1)

and this is sometimes used to define fPBH even in the case that the PBHs have

evaporated, even though this means that ρPBH = 0 today. Roughly speaking, the

observational constraints can be divided into two categories:

1. Gravitational constraints which more directly relate to fPBH constraints.

2. Hawking evaporation constraints which are best phrased in terms of β.

1. Microlensing constraints

If a PBH (or any other sufficiently compact object) passes close to the line of sight

to a more distant luminous object, then the light from the source will be gravitationally

focused and enhanced. Hence, PBHs can make stars look brighter while they are close

to the line of sight. The strength of the lensing magnification is larger for larger mass

objects and also largest when the lensing object passes closest to the line of sight to the

luminous source. Therefore, the total duration of the luminosity enhancement depends

on the mass of the compact object as well as its velocity transverse to the line of sight,

with the timescale of the magnification signal varying from a few hours for a 10−6M�

compact object to a timescale of months for a 10M� mass object.

Historically searches for compact objects focused on repeating observations of the

same patch of the sky every night and repeating the process for days or years, so

these surveys such as OGLE and EROS were most sensitive to compact objects in the
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mass range 10−6 − 1M� and they have found a few lensing events, but not more than

would (probably) be expected from compact objects created by standard astrophysical

processes such as freely floating planets, and the overall constraint in the mass range

they could probe was fPBH . 0.1.

Recently the Hyper-Suprime Cam (HSC) on the Subaru telescope made a very

detailed search over just one night for low mass lenses, and this greatly improved the

constraints to the lower mass end, being sensitive enough to provide the constraint

of fPBH . 10−2 for MPBH ∼ 10−9M� and ruling out fPBH = 1 for the mass range

10−12M� . MPBH . 10−6M�. Originally the HSC collaboration claimed to have

constrained even smaller mass compact objects, but this has now been accepted not

to be correct because of the finite source effect, which basically means that once the

apparent size in the sky of the lensing object becomes comparable to the apparent size

of the object being lensed then gravitational lensing is only effective on part of the

surface of the lensed star and not the entire surface, which means that the relative

enhancement in the luminosity becomes too small to be detectable [11].

2. Other gravitational constraints

For larger masses (more than about a solar mass) there are two other constraints

which have been considered for a long time, accretion and DM discreteness effects,

plus a much newer gravitational wave constraint.

The accretion of gas onto black holes emits high energy radiation which can be

detected, for example there was recently a lot of publicity about the event horizon

telescope “image” of a supermassive black hole.16 Accretion involves highly non-linear

physics and is therefore hard to model robustly, but the constraints from accretion

(both at z = 0 or during recombination when the CMB formed) appear to rule out

fPBH = 1 for MPBH & few ×M� and the constraints become much tighter for larger

masses, e.g. fPBH . 10−4 for MPBH & 102M�. In general, accretion is not expected to

be significant for PBHs with an initial mass much below ten solar masses, and hence

16 For a review of astrophysical black holes see [12].
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light PBHs are expected to have an essentially constant mass (unless they are so small

that Hawking evaporation is important) and hence also a constant spin [13].

Discreteness effects (sometimes called dynamical constraints) are caused by very

massive PBHs not looking like a ‘smooth’ density field on small scales. For example,

dwarf galaxies with masses 107 − 109M� could be modified or even destroyed if DM

was made out of PBHs with very large masses. In practise these constraints are not

as tight as the accretion constraints and hence are not so widely discussed.

The gravitational wave bound is based on the LIGO and Virgo observations of

merging compact objects. These detectors are most sensitive in the 102−103M� mass

range and hence the tightest constraints are also found in this mass range, with the

constraint being fPBH . 10−3 which is the tightest constraint in this mass range,

but it is also quite model dependent since it is not straightforward to estimate the

current merger rate of a large population of PBHs. The standard calculation assumes

that PBHs form binary pairs in the very early universe, shortly after formation and

long before matter-radiation equality, and that many of these binary pairs remain

relatively undisturbed until today. Estimating the disruption rate of these ‘primordial’

binaries pairs is a numerically challenging task but there appears to be a consensus that

although disruption is a very important effect when fPBH ' 1 and hence there are many

PBHs which can disrupt each other, that for fPBH . 10−2 that disruption becomes

relatively rare [14]. Requiring that all of the observed LIGO Virgo merger events

were due to primordial black holes requires fPBH ' 3 × 10−3 (assuming a lognormal

mass distribution with a central mass around the 20M� but this scenario is strongly

disfavoured compared to the alternative (standard) scenario that all of the mergers

are due to astrophysical black holes [15]. A mixed scenario with astrophysical and a

subdominant population of primordial black hole mergers works [16, 17]. In practise

astrophysical models of black hole formation and merger are sufficiently uncertain

that it would be very hard to prove any specific merger of two compact objects was

caused by primordial black holes unless at least one of the component masses is clearly

below the Chandrasekhar mass, which is the lowest mass compact object that can form

through standard astrophysical processes.

To the lower mass range than the microlensing lower bound there is a relatively wide
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mass window where fPBH = 1 is possible, which is from 1017 − 1022 g or equivelantly

10−16 − 10−12M�. This window, in which all of the DM could consist of PBHs, is

sometimes referred to as the ‘asteroid mass window’.

Although the constraints discussed here are based on an unrealistic monochromatic

(single) mass function, in practice the constraints do not change by more than a factor

of order unity when considering more realistic and broader mass functions [18]. Hence

there is a reasonable (but not complete) agreement that even a broad mass function

would not allow for all the DM being made out of PBHs with masses far above the

‘asteroid’ mass range.

3. Evaporation constraints and PBH relics

Black holes are not perfectly black when taking quantum mechanical effects into

account, and in fact they radiate energy away with a temperature set by the Hawking

radiation from a black hole, which satisfies

T ∝M−1
PBH.

Recalling that the radius of a black hole is proportional to its mass, meaning its

surface area is proportional to M2
PBH, and given that the energy radiated follows a

blackbody distribution with total energy proportional to T 4 per unit area, the total

energy radiated away is proportional to the area times T 4, which is proportional to

M−2
PBH. Using E = mc2 we can deduce that the rate of mass loss from the black hole

satisfies

dMPBH

dt
∝ 1

M2
PBH

and this can be integrated to find that the lifetime of a BH satisfies

tevap ∝M3
PBH.

Inserting numerical factors one can check that the evaporation timescale equals the

age of the universe for a PBH with initial mass MPBH ' 1015 g, and that the Hawking

evaporation is non-negligible today if the initial mass satisfies MPBH . 1017 g. PBHs
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which decay today or during the time of recombination when the CMB formed are

very tightly constrained by observations, and there are also constraints on the allowed

decay of PBHs which would decay during BBN. However, the decay of PBHs before

BBN begins (corresponding to those with initial mass MPBH . 1010 g) is extremely

hard to constrain using any observations.

When the PBH comes close to completely evaporating the energy being evaporated

comes close to the Planck energy at the time the mass becomes comparable to the

Planck mass. At this point the semi-classical physics used to derive the Hawking

temperature might not remain valid and it remains an open question whether black

holes evaporate completely or whether a relic remains. If a relic remains it would

presumably have approximately a Planckian mass. If Planck mass relics can form then

they could be a DM candidates, potentially a ‘nightmare’ DM scenario in which the

DM is too hard to detect by any known technology. However, there has recently been

a theoretical argument made that relics would gain a large peculiar velocity during the

decay process and this could rule them out as a cold dark matter candidate [19].

Figure 4 shows a summary of the constraints on fPBH over a wide range of masses.

For more details of the observational constraints see [7] and references therein, or for

a comprehensive list of constraints phrased in terms of β see [20].

A. Constraints on the primordial power spectrum

In this section we will briefly summarise the primary alternative methods to

constraining the power spectrum amplitude. On scales larger than about a Mpc,

k . Mpc−1, observations of the CMB and LSS have provided an accurate measurement

of the amplitude. Over a huge range of smaller scales, PBHs provide a weaker

constraint as discussed in section V B.

1. Spectral distortions

Because the early universe before recombination was in thermal equilibrium, the

CMB photons follow a black body distribution. Confirmation of this fact by the
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FIG. 4. Some of the key constraints on fPBH showing which types of constraints are most

important over a wide range of mass scales. Taken from the review article [7].

COBE FIRAS instrument was a very important piece of evidence in favour of the Big

Bang theory. However, the damping of large amplitude density perturbations during

certain redshifts/temperatures would act as an energy injection into the baryon-photon

plasma, which could lead to a deviation from thermal equilibrium and hence a deviation

from a blackbody spectrum [21].

The relevant constraint from the non-detection of a cosmic-µ distortion based on

the COBE FIRAS results are roughly PR . 10−4 in the range k ∼ 1 − 104 Mpc−1,

where the smallest constrained scale corresponds to a PBH mass of about 104M�.

Hence, PBHs cannot have a larger mass than this if they were formed by the collapse

of large amplitude perturbations shortly after horizon entry, unless the perturbations

were strongly non-Gaussian or if there was an early matter dominated epoch taking

place while the relevant scales were entering the horizon.
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2. Gravitational waves

As you may have learnt in an introductory cosmology course, at linear order the

scalar, vector and tensor perturbations all decouple. On large scales, the perturbations

observed via the CMB are so small that we know linear perturbation theory is an

excellent approximation. However, on smaller scales where the perturbation amplitude

becomes much larger, there could be a significant non-linear coupling between different

types of perturbations. Of particular interest are the second-order tensor perturbations

which are generated by the square of linear scalar perturbations. The full equations

showing the coupled evolution of the non-linear perturbations are very complicated,

but we can write their order of magnitude schematically as h(2) ∼ R2, where h(2)

denote the intrinsically second-order tensor (gravitational wave) perturbations. These

induce a power spectrum amplitude of the tensor perturbations given by

PT ∼
(
h(2)

)2
∼ R4P2

R. (VI.2)

The corresponding frequency of the waves is given in terms of the scale at horizon

entry, k = aH, by

f ∼ ck.

These second-order tensor perturbations could appear as a stochastic background

of gravitational waves. By a nice coincidence the scale corresponding to a horizon mass

of 1 solar mass (and the QCD transition) has a frequency in the range which pulsar

timing arrays (PTA) can constrain, and the current PTA constraints on the amplitude

of the primordial scalar power spectrum are at almost exactly the same amplitude as

is required to generate PBHs with this mass. Therefore, if LIGO and Virgo have or

do detect any PBHs then we should expect to see a corresponding signal of stochastic

gravitational waves. The coincidence of scales and constraints is shown in the upper

plot of figure 5. We note that the NANOGrav collaboration have recently reported

a detection of excess noise in pulsar timing residuals, but they don’t have a strong

enough signal to determine whether this data is caused by gravitational waves [22].

It is also of interest to note that if the DM does consist of asteroid mass PBHs then

the LISA space based gravitational wave detector, due to launch in the mid 2030’s,
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is expected to detect an associated signature of stochastic gravitational waves at high

significance [23]. The lower plot of figure 5 shows this forecasted sensitivity of the

LISA instrument, as well as the Einstein Telescope (ET) and the Square Kilometre

Array (SKA) constraints on pulsar timing observations. The forecasted constraints on

the µ-distortions are based on assuming a PIXIE like survey [24].

B. Possible signatures

Every observational constraint is also a possible signature. However, whilst some

signatures could be relatively clearly identified as being due to a PBH, others would

be much harder to interpret. For example, a detection of microlensing events could be

due to freely floating planets or other astrophysical objects, and it is hard to make a

robust estimate of how many such objects could form out of baryonic objects. Likewise,

a detection of gamma rays, which could be due to evaporating PBHs, could also be

caused by high energy astrophysics or either decaying or annihilating dark matter

particles. Nonetheless, there are some tentative hints of PBH signatures in existing

data, see [26] for an overview.

The most promising direct detection signature which is accessible with current

instruments would be the discovery for a sub-solar mass compact object [27].17 If such

low mass PBHs are not detected, an alternative direct gravitational wave probe - in

the far future with a detector such as the Cosmic Explorer - would be the detection of

a very high redshift merger (z & 40), which would be a signature from such early times

that stellar objects would not yet have had time to collapse into compact objects [28].

A less direct, but still promising, gravitational wave probe is via the stochastic

background of gravitational waves generated at high redshift. The most promising

current probe are the PTA searches which form a synergy with the characteristic mass

of the LIGO-Virgo detections and the QCD transition, as shown in the upper plot of

figure 5. This opens the possibility that an analysis of the frequency dependence of

the PTA gravitational wave background (if detected and not astrophysical in origin)

17 For a popular science article about this, see https://www.quantamagazine.org/

black-holes-from-the-big-bang-could-be-the-dark-matter-20200923/?fbclid=

IwAR2GgvelVyYAEkvZTfitIVjAEgwnvTwpgp6TNHfNrtS1SHin6hX6Gy7L5BY.

https://www.quantamagazine.org/black-holes-from-the-big-bang-could-be-the-dark-matter-20200923/?fbclid=IwAR2GgvelVyYAEkvZTfitIVjAEgwnvTwpgp6TNHfNrtS1SHin6hX6Gy7L5BY
https://www.quantamagazine.org/black-holes-from-the-big-bang-could-be-the-dark-matter-20200923/?fbclid=IwAR2GgvelVyYAEkvZTfitIVjAEgwnvTwpgp6TNHfNrtS1SHin6hX6Gy7L5BY
https://www.quantamagazine.org/black-holes-from-the-big-bang-could-be-the-dark-matter-20200923/?fbclid=IwAR2GgvelVyYAEkvZTfitIVjAEgwnvTwpgp6TNHfNrtS1SHin6hX6Gy7L5BY
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FIG. 5. Constraints on the amplitude of the primordial power spectrum. On both figures the

left hand lines show the amplitude detected by current CMB observations. All other shaded

regions show upper bounds on the amplitude, focusing on current constraints in the upper plot

and future constraints in the lower plot. For both plots the blue lines (which are weaker for

PBH constraints and broader for all other constraints) are based on a narrowly peaked power

spectrum, while the red lines show the equivelant constraints for a power spectrum with a

broader peak. The PBH constraint lines in the lower plot are the best theoretically possible

constraints, based on zero PBHs forming inside the observable universe. The top horizontal

axis, mc, shows the central PBH mass corresponding to each value of k shown in the lower

axis. For more details see [25].
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could be tested against the corresponding mass range of LIGO and other ground based

gravitational wave detectors.

In the longer term (on a time scale of a few decades) the space-based LISA

gravitational wave detector should see a clear signal of a stochastic gravitational

wave background if the DM is made out of asteroid mass PBHS. Recalling the

logarithmic sensitivity of the scalar power spectrum amplitude to fPBH (and hence

also the associated tensor power spectrum) it becomes clear that the non-detection of

a primordial stochastic background by LISA would not only rule out fPBH = 1 but even

the formation of any PBHs at all in the same mass range.18 Given that the lower plot

of figure 5 shows the upper bound on the power spectrum amplitude below which zero

PBHs would form in today’s observable universe, we can see that in the future there

will be almost no remaining mass windows for non-evaporated (or relic) PBHs to have

formed, assuming that none of the experiments shown detect the relevant signature

used to constrain the power spectrum amplitude. Hence, future searches for PBHs

have a bright future, and we can realistically hope to determine whether or not DM is

made out of a new particle or primordial black holes.

In summary – whether or not PBHs exist – the search for them has led to new

understandings about the nature of the contents and initial conditions of the universe.
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become relatively more important as the universe grows, and the fact that the universe

is still not dominated by the curvature term may point to a fine tuning of the initial

conditions of the universe. We will estimate how much of a fine tuning this represents

below.

The critical density defines the density of a spatially flat universe, i.e.

ρc ≡ 3M2
PlH

2. (A.1)

It is useful to use this to rewrite each energy component as its contribution towards

the critical energy density of the universe, i.e.

Ωi ≡
ρi
ρc

(A.2)

and the total density density is therefore

Ω = Ωm + Ωr + ΩΛ. (A.3)

We can then rewrite the Friedmann equation in yet another form, as

κ

R2
0

= a2H2 (Ω− 1) (A.4)

where κ = 0 corresponds to a (spatially) flat universe, and we therefore see that a flat

universe has Ω = 1 at all times.

Recalling from equation (A.4) that the total density parameter (which determines

the flatness, or otherwise of the universe) scales as

|Ω− 1| ∝ 1

a2H2
=

a = t2/3 during matter domination

a2 = t during radiation domination
(A.5)

we can see that the curvature term at the time of radiation-matter equality should

have been smaller by a factor of

|Ω(trm)− 1|
|Ω0 − 1|

∝ arm

a0
' 1

3500
. (A.6)

Although I have neglected the impact of Λ on this estimate, recall that the scale factor

at matter-Λ equality is close to unity and hence this correction is not very important.



Theoretical aspects of Astroparticle Physics, Cosmology and Gravitation - GGI 2020 45

Since the Planck satellite measurements of the position of the first peak in the CMB

perturbation spectrum constrain the universe today to be within a percent of being

flat, meaning that

|Ω0 − 1| . 10−2

we can see that the universe needed to satisfy the condition that

|Ω(trm)− 1| . 10−6,

which looks quite finely tuned. Going back further in time, for example to the time of

1 second after the Big Bang when BBN was just beginning, the fine tuning was even

worse, by a factor of (arm/a(t = 1s))2 = 50,000 years / 1 second ' 1.6 × 1012, so at

this time the flatness must have satisfied

|Ω(t = 1 second)− 1| . 10−18,

and it keeps getting more and more fine tuned as we go further back in time. Until,

of course, the epoch of inflation.

During inflation the energy density of the universe decreases at a negligible rate, so

instead the curvature will become less important at a rate of

a−2 = e−2N

during inflation. Hence, provided that inflation lasted long enough to drive the

curvature of the universe down to a tiny value, then all of the subsequent growth

during radiation and matter domination will still not be enough to make the universe

deviate significantly from being flat today.

How much inflation we need (i.e. what is the minimum required value of Ninf)

depends both on the energy scale of inflation, because that determines the energy

scale/time when the universe becomes radiation dominated again, and also on the

initial curvature of the universe before inflation begun. Given that we don’t have

a good theory for what preceded inflation, perhaps the most natural assumption is

that just before inflation begun the curvature made an order unity contribution to the

Friedmann equation, meaning that

|Ω(ti)− 1| ∼ 1, (A.7)



46 C. T. Byrnes: Inflation and PBHs

where ti corresponds to the time when inflation begun. Given that the current

constraint on the curvature is two orders of magnitude tighter than this, inflation

must have proceeded for long enough that |Ω− 1| is a factor of hundred smaller today

than it was at the time that inflation begun.

If we (unrealistically) make the energy scale of inflation to be as low as possible,

the MeV scale of BBN, which corresponds to inflation ending about 1 second after the

Big Bang, then we require

|Ω(ti)− 1|e−2Ninf ∼ e−2Ninf ∼ |Ω(t = 1 second)− 1| . 10−18 (A.8)

which implies

Ninf &
1

2
× 18 ln(10) ' 21. (A.9)

If - as expected - radiation domination begun much earlier than the time of BBN and

hence lasted for longer, then the universe expands by a larger factor during radiation

domination and hence there is more time for the curvature to become important.

This would require a larger number of efoldings of inflation in order that the universe

remains sufficiently close to flat today.

To be concrete, let us consider the opposite extreme where inflation takes place

at an energy scale of 1015 GeV, which is close to the grand unified theory (GUT)

energy scale. This corresponds to a temperature 18 orders of magnitude larger than

the temperature when BBN begun and hence the scale factor is 18 orders of magnitude

smaller, meaning that the universe must be closer to flat by 36 orders of magnitude19

compared the case when inflation ended just before BBN begins. In this case we require

Ninf & 21 +
1

2
× 36 ln(10) ' 62, (A.10)

and since inflation at a high energy scale is generally considered more natural

than inflation at a low energy scale (based on theoretical arguments rather than

observations), values of Ninf & 50 − 60 are normally considered the “benchmark”

lower bounds.

19 Recall that the curvature becomes relatively more important than radiation at a rate of a2 during

radiation domination.
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FIG. 6. A pictorial way to understand the impact of inflation. The radius of curvature is

massively increased in a short time, leading the ants to be unable to see that they live on a non-

flat surface. The figure is from http://ircamera.as.arizona.edu/NatSci102/NatSci102/

lectures/eraplanck.htm

An intuitive way to understand the impact of inflation is to realise that the

exponential growth of the scale factor – by a large factor of eNinf – means that the radius

of curvature grows by this same huge factor, whilst the Hubble distance c/H barely

increases because H is nearly constant during inflation. Therefore, thinking again of

spatial curvature in two dimensions, in terms of ants walking on a curved surface and

subject to a maximum local speed, it becomes clear that they will be unable to notice

the impact of the global spatial curvature once the radius of curvature becomes much

larger than the distance they can walk in period of time shorter than a Hubble time,

and hence their universe will look flat to them. This is depicted in figure 6.

2. The horizon problem and how inflation can solve it

Although I have argued at length that the early universe was in thermal equilibrium,

and hence different particle species shared a common temperature, it should be clear

that reaching thermal equilibrium is a dynamical process which does not happen

instantaneously. We do not need to to calculate exactly how long it takes a given

region to reach thermal equilibrium, but we can at least find an absolute minimum by

requiring that the process to reach thermal equilibrium is a causal process, meaning

http://ircamera.as.arizona.edu/NatSci102/NatSci102/lectures/eraplanck.htm
http://ircamera.as.arizona.edu/NatSci102/NatSci102/lectures/eraplanck.htm
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that the process cannot proceed more quickly than an upper bound set by the speed of

light, which is the (local) cosmic speed limit. When calculating the maximum region

that could have reached thermal equilibrium at any given time, we need to take the

expansion rate of the universe into account, and the answer is given by the physical

horizon distance.

The most interesting epoch to consider when thinking about the horizon problem

is the last scattering surface of the CMB. This is the oldest light we can observe, and

it is known to be extremely uniform in all directions, with a temperature that varies

by about 1 part in 100,000 and which follows the blackbody distribution, meaning

that the CMB must have formed when it was close to thermal equilibrium, locally and

globally across the observable universe. Looking back to the week 9 lecture question,

the physical horizon scale at last scattering was 0.25 Mpc with a corresponding angular

scale on the sky of 1.1◦,20 meaning that there is no explanation for how the temperature

on two parts of the sky separated by much more than 1 degree could have been at the

same temperature at the time of last scattering. Using the fact that the total area of

a sphere is about 40,000 square degrees, we can see that causal processes in a universe

which was radiation and matter dominated before last scattering can only explain

how patches of the sky with a scale of about 1 degree reached thermal equilibrium,

and hence it appears to be a truly enormous coincidence that about 40,000 causally

disconnected patches of the sky all had the same temperature at the time of last

scattering. Recall that although we observe the temperature of the CMB photons as

measured today, which have redshifted and hence decreased by a factor of about 1,100,

the last scattering surface formed at the same temperature everywhere and hence the

incredible similarity of the relative CMB temperatures seen today must be reflected in

the same relative (tiny) fluctuations of the temperature at the time of last scattering.

This is the horizon problem.

In order to give a more concrete answer, let’s consider a case where the universe

was radiation dominated immediately before and after inflation21, and that inflation

20 Recall that we did not consider inflation when estimating these values.
21 An instant transition is of course unrealistic, but provided that the scale factor grew by a much

larger factor during inflation than during the transition to or from inflation, this approximation is

unlikely to be important.
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started at time ti and ended at time te, such that the scale factor before radiation-

matter equality satisfied

a(t) =


ai(t/ti)

1/2 if t < ti

aie
Hinf(t−ti) if ti < t < te

aie
Hinf(te−ti)(t/te)

1/2 = aie
Ninf (t/te)

1/2 if t > te

(A.11)

and we used (III.2) in the final line of the equation above. The most striking fact about

this solution is that for any given value of H (and hence for a given energy/temperature

as well as a given Hubble time and Hubble distance) after inflation has ended, the scale

factor is larger by a factor of eN than it would be if inflation had never taken place.

Recall that the horizon distance at any general time (hence including the factor of

a(t) in the formula below) is given by

dhor(t) = a(t)c

∫ t

0

dt′

a(t′)
(A.12)

and hence the horizon scale at the start of inflation is

dhor(ti) = 2cti =
c

Hi

which is the Hubble distance at that time. By the end of inflation, the horizon distance

has grown to become

dhor(te) = aie
Ninf c

(∫ ti

0

dt′

ai(t′/ti)1/2
+

∫ te

ti

dt′

aieHinf(t′−ti)

)
(A.13)

and in the case of interest, with Ninf � 1, and assuming Hinf ∼ t−1
i we can approximate

this as

dhor(te) ' eNinf3cti, (A.14)

meaning the horizon scale has grown by more than a factor of eNinf in a time when the

energy density did not significantly decrease. This is only possible when ω ' −1.

The horizon distance after the end of inflation remains much larger than it would

have been if inflation had not taken place. The horizon scale becomes

dhor(t > te) = aie
Ninf c

(∫ ti

0

dt′

ai(t′/ti)1/2
+

∫ te

ti

dt′

aieHinf(t′−ti)
+

∫ t

te

dt′

aieHinf(te−ti)(t′/te)1/2

)
(A.15)
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FIG. 7. A log-log plot of the horizon distance (in arbitrary units) in a radiation dominated

universe with or without inflation. To make the plot I chose Ninf = 60 and Hinf = 1/ti. The

red-dashed line shows the result if no inflation had taken place, while the solid-black line shows

the result including inflation. Notice that the two lines to not grow at the same rate after

inflation has ended, the red-dashed line scales like t while the solid-black line scales like t1/2.

and although the full expression is long, you can check that the middle integral (which is

time independent) dominates over the two other integrals (assuming Ninf is sufficiently

large) and hence to a good approximation the late time horizon distance (but still

during radiation domination) becomes

dhor(t > te) '
(
t

te

)1/2

eNinf 3 cti, (A.16)

so it scales like t1/2 (which is slower than the scaling with t for a universe which has

always been dominated by radiation) but it is boosted by about a factor of eNinf ≫ 1

compared to the value it would have had if inflation had not taken place. Figure 7

shows a plot of how the horizon distance is changed by an early period of inflation,

which is based on using the full expression given by equation (A.15).

Just as was the case with the flatness problem, how much inflation is needed depends

on when inflation ended, and hence how long the subsequent radiation dominated epoch

lasted. The rough idea is that the horizon scale at the time of last scattering (which

you should recall occurs reasonably shortly after radiation-matter equality) should be

big enough to explain how all the different Hubble patches at that time managed to

reach the same temperature through thermalisation, which roughly means the angular

scale of regions which were in causal contact at the time of last scattering should reach
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across the whole sky and hence have a size of 360◦ instead of about 1◦, meaning it

should be about a factor of 360 times larger.22 A detailed calculation of exactly how

much inflation is required to solve the horizon problem, as a function of the energy

scale of inflation goes beyond the scope of this course, but it turns out the required

amount of inflation is not very different from the amount of inflation required to solve

the flatness problem, so the ‘typical’ value is considered to be Ninf & 50.

3. The monopole problem and how inflation can solve it

In brief, at very high energies (perhaps at the grand unified theory (GUT) scale

where the electroweak and strong forces are postulated to be unified - but don’t worry

about this ‘GUT’ scale if it is not familiar) it is believed that magnetic monopoles could

and would have formed. Because these particles would be heavy, they would quickly

become non-relativistic and hence dilute like matter (a−3) which is more slowly than

the background radiation would dilute, and hence they would become increasingly

important with time. Yet no magnetic monopole has ever been observed.

The way inflation solves this problem is very simple, it would dilute their number

density by a factor of e−3Ninf which could (for large enough values of Ninf) mean that

not a single magnetic monopole remains within our observable horizon today.

Of course, in order to be a successful explanation, inflation must take place at a

lower energy scale than the scale associated with the production of monopoles. You

might be concerned at this point that if monopoles formed before inflation then the

universe would have been matter dominated instead of radiation dominated before

inflation begun, in contradiction with the assumed behaviour of the scale factor in

equation (A.11). That is true, but the qualitative picture would not change and even

the quantitative picture would only change by (at most) a factor of order unity, so the

uncertainty of what preceded inflation is not an important unknown.

22 You might object that if the entire observable CMB sky had been in causal contact before last

scattering then the position of the first peak of the CMB perturbations should also be on this much

larger scale. That’s a reasonable concern, but this is incorrect because the oscillations in the baryon-

photon plasma can only begin around the time of BBN when the atomic nuclei have formed, and

hence the horizon scale of last scattering which we calculated for that purpose (which neglected the

possibility of inflation), still gave the correct estimate for that purpose.
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4. A comparison of the problems inflation may have solved

In passing I want to mention that textbooks often present the horizon, flatness and

monopole problems on an equal footing, suggesting they are all equally important. I

would argue that is not justified, because two of the problems can be explained away

relatively “easily” without invoking a period of inflation.

First of all, the monopole problem is only a problem if monopoles could really have

formed, and there are only indirect theoretical arguments to suggest they should (in

principle) exist. If those arguments are wrong, and they are based on extrapolating

known physics up to much higher energy scales than can be experimentally tested,

then the monopole problem is simply a problem of us not knowing the correct theory

of very high energy physics.

Secondly, the flatness problem is only a problem if the universe is not exactly flat.

But clearly it might be exactly flat, in which case Ω = 1 at all times and there never

was and never will be a flatness problem. I am not aware of any strong theoretical

arguments to suggest the universe should or should not have global spatial curvature,

and hence it seems more reasonable to suggest the universe happens to be exactly flat

rather than the initial condition for the universe was so incredibly close to flat that

the deviation from flatness at the time BBN begun was less than one part in 1016.

However, the horizon problem is different. There is no reasonable mechanism known

to explain why the universe had the same temperature everywhere at very early times,

unless there was time for the early universe to reach thermal equilibrium on a large

enough scale to explain why the last scattering surface has such a uniform temperature.

Hence, I would single out the horizon problem as the strongest piece of evidence for

inflation when only considering the homogeneous background universe.

If you demand that there were sufficient efoldings of inflation that the horizon

problem is solved, it turns out that this amount of expansion also means that the

flatness and monopole problems are naturally solved, assuming that they were problems

which needed to be solved.

With all of these problems, notice that we have calculated how much inflation was

required. The total duration of inflation may of course be longer, potentially vastly
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longer, but there is no observational way known to determine a reliable upper bound

on the duration of inflation.
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