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In this lecture we will compute cosmological observables and study the effect of sterile neutrinos on the
CMB spectrum. The tools we will use are CLASS and MontePython.

First of all, we should learn how to use CLASS and how to configure the physics we want to consider.
The code can be executed in two ways: running it via command line with an input (*.ini) file, or using
the python wrapper classy.

1 CLASS

The parameters that configure the content of the physics are the same in both cases, and the easiest way
to learn about them is to open the explanatory.ini, provided with the code. The user is encouraged to
avoid editing the original explanatory.ini, in order to preserve the information on the default parameters
as provided by the developers.

The file is divided in several sections, according to the category of parameters that are available in the
code. The section names are:

• General parameters

• Species parameters

• Exotic energy injection parameters

• Non-linear parameters

• Primordial parameters

• Spectra parameters

• Lensing parameters

• Distortions parameters

• Output parameters

You can easily guess where you will be able to find information on what you are interested on. The content
of the universe, for example, is described in “Species parameters”: there, you will find information on
the available species, which include standard (photons, baryons, ultra-relativistic species, cold and non-
cold dark matter, curvature, dark energy) and non-standard species (decaying dark matter, dark matter
interacting with dark radiation, dark matter interacting with baryons to be added). Other useful parameters
are described in “General parameters” (output quantities, modes, Hubble parameter, BBN, reionization),
“Primordial parameters” (for inflation), “Non-linear parameters” (how to compute the non-linear matter
power spectrum), “Lensing parameters” (lensing potential and lensing of the CMB spectrum) and “Output
parameters” (name of the output files, verbosity of the code).

For defining the species that constitute the universe, CLASS allows to specify them in different ways.
For example, the photon density can be defined by T cmb, Omega g or omega g, the neutrino mass (massive
neutrinos are considered non-cold dark matter species) is indicated by m ncdm, Omega ncdm or omega ncdm,
and so on.

A full description of all the parameters is well beyond the scope of this course. In the following section
we will see some examples of viable CLASS ini files, you may look in the explanatory.ini for more details.
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1.1 Command line use

The easiest way to use the code is to write a configuration file, let us call it mymodel.ini. The file must
include at least a few lines to configure CLASS: all the mandatory parameters that are not specified in the file
are fixed by the code to the Planck best-fit or to some reasonable value. In order to consider a cosmological
model with three massless neutrinos, this is an example of our mymodel.ini file:

N_ur=3.044

N_ncdm=0

root=output/massless3_

T_cmb=2.7255

h=0.67

Omega_b=0.04

Omega_cdm=0.3

reio_parametrization = reio_camb

z_reio=9

P_k_ini type = analytic_Pk

A_s=2.2e-9

n_s=0.96

lensing=yes

non_linear = halofit

write warnings=yes

output = tCl,pCl,lCl,mPk

temperature contributions=tsw,eisw,lisw,dop,pol

modes=s

Notice that the first three lines are those that define the number of ultra-relativistic neutrinos, of massive
neutrinos and the path where to save the data. The rest of the lines define the content of the universe. Notice
that there is nothing special in the choice of parameters, you may change the configuration and use the Planck
best-fit values if you prefer. Notice also that we are asking the code to compute temperature, polarization
and lensing power spectra for the CMB and the matter power spectrum (output = tCl,pCl,lCl,mPk),
the lensed CMB spectrum (lensing=yes) and also the non-linear matter power spectrum (non linear =

halofit).
Once the file is saved, we can run the code using ./class mymodel.ini, assuming that we are inside

the CLASS folder and that the file is saved in the same place. Once the execution is completed, you will find
several new files in the output folder:

• massless3 00 cl.dat (non-lensed CMB spectra);

• massless3 00 cl lensed.dat (lensed CMB spectra);

• massless3 00 pk.dat (matter power spectrum from linear theory);

• massless3 00 pk nl.dat (non-linear matter power spectrum).

Let us now repeat the execution of CLASS with a different model. We want now to consider one massless
and two massive neutrinos, to simulate the case when the lightest neutrino is massless and the ordering
of the neutrino masses is normal. In such case, from the squared-mass splittings obtained by atmospheric
and solar neutrino oscillations we obtain that the masses of the three standard neutrinos are 0, ∼ 10 and
50 meV, respectively. We also have to reduce the number of ultra-relativistic species in order to reflect the
presence of only one massless neutrino. In CLASS, these values are defined using:

N_ur=1.0176

N_ncdm=2

m_ncdm=0.01,0.05

root=output/massive3_NO_

while the rest of the input file presented above remains unchanged. Notice that the comma separates the
values of the two masses, expressed in eV.
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Before moving to sterile neutrinos, we should now practice a bit with plotting the output. Here you
will see two figures obtained from the output files of the two runs discussed above: figure 1 shows the
comparison of the lensed temperature spectrum of the CMB comparing the two cases we computed (stored
in the * cl lensed.dat files), while figure 2 reports the same but for the linear (* pk.dat) and non-linear
(* pk nl.dat) power spectra. Can you reproduce the figures? The file content is described in the headers,
so you should open them in order to understand how to read and plot the information.
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Figure 1: Difference between the lensed CMB temperature of the massless and massive neutrino case
described in the text.
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Figure 2: Difference between the matter power spectra (linear and non-linear) of the massless and massive
neutrino case described in the text.

1.2 Python wrapper

We should now verify if the CLASS python wrapper works correctly, because it will be necessary for the
MontePython exercise later. If you have properly installed it, when you run python -c ’from classy

import Class’ from your command line you should obtain no errors. Remember to install and use it with
the same python version, or within the same environment if you use Anaconda or similar. If it works, we can
write a python script which imports the CLASS wrapper, configures it and runs the numerical calculations:
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params={

"T_cmb":2.7255,

"h":0.67,

"Omega_b":0.04,

"Omega_cdm":0.3,

"reio_parametrization": "reio_camb",

"z_reio":9,

"P_k_ini type": "analytic_Pk",

"A_s": 2.2e-9,

"n_s": 0.96,

"lensing": "yes",

"non linear": "halofit",

"output": "tCl,pCl,lCl,mPk",

"modes":"s",

"P_k_max_1/Mpc":3.0

}

from classy import Class

#define Class object

mymodel = Class()

# pass input parameters

mymodel.set(params)

mymodel.compute()

Notice that the params dictionary contains almost the same parameters we defined in mymodel.ini: the
python wrapper and the ini files are read in the same way by CLASS. If you execute these lines, you will
have to wait for few seconds in order to allow CLASS to compute most of the expensive computations.

At this point, we need to understand how to extract the output, which is not stored in files but it must
be obtained calling the methods of mymodel (which is an instance of the Class class1). In particular, the
quantities stored in the output files we discussed above when talking about the command-line output, are
obtained using the following methods:

• mymodel.raw cl(max ell)

• mymodel.lensed cl(max ell)

• mymodel.pk(k, z) (non-linear!)

• mymodel.pk lin(k, z) (linear)

Notice that the first two functions return a dictionary, which contains several items depending on the
requested outputs (they may include “ell”, “tt”, “ee”, “pp” and more: check which ones are available with
mymodel.raw cl(max ell).keys()), while the last two functions return a number, corresponding to the
linear or non-linear power spectrum at the given wavemode k and redshift z. You should also pay attention
to the normalization of the CMB spectra: by default, CLASS saves `(`+1)/(2π) C`, as described in the output
files, while in the code you obtain the C` without any prefactors.

In order to plot the lensed C`s and the non-linear power spectrum for the mymodel case defined above,
this is an example showing how to proceed (add these lines to those written previously):

import matplotlib.pyplot as plt

import numpy as np

cls = mymodel.lensed_cl(2500) #cls up to ell=2500

plt.figure()

plt.semilogx(cls["ell"][2:], 1e10/2/np.pi*cls["ell"][2:]*(cls["ell"][2:]+1)*cls["tt"][2:])

plt.show()

# plt.savefig("...") to save it to file

plt.figure()

1Notice that “class” is a reserved word in python: it cannot be used for variables, modules or objects. For this reason, the
developers called the CLASS wrapper “classy” and the included class “Class” (with capital C).
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Figure 3: Comparison of the TT spectrum for different neutrino models.

kk=np.geomspace(1e-4,1,1000) #list of 1000 points uniformly spaced in the logarithm

pks = [mymodel.pk(k, 0) for k in kk] #compute pk(k, z=0) for each k in the kk list

plt.loglog(kk, pks)

plt.show()

Let us move now to one step further. Using the python wrapper, and starting from the examples provided
in the previous section, where we compared the case of massless and massive neutrinos, plus the lines of
code provided in this section, you should now be able to add one sterile neutrino. You can either consider a
massless (in such case you will probably want to add one degree of freedom to ultra-relativistic particles) or
a massive one (implemented through a non-cold dark matter species, ncdm). Assume a mass equal to 1 eV
for the additional neutrino. Consider the following models: three massless neutrinos, one massless and two
massive neutrinos (active), four massless neutrinos, three massless and one massive neutrino (sterile), one
massless and three massive neutrinos (2 active, one sterile). Can you compare the CMB spectra obtained
when considering these models? The result should be similar to figure 3.

Before moving to the next section, let me add another parameter that relates to the sterile neutrino.
Until now, we have considered only neutrinos which provide a fixed contribution to the total amount of
relativistic energy density in the very early universe, i.e. each neutrino always contributes with ∆Neff ' 1.
Sometimes, and in particular this applies to the sterile neutrino case, it is useful to allow the neutrino to
contribute less than 1. In CLASS, the parameter deg ncdm (it behaves exactly as m ncdm when N ncdm> 1)
controls the degeneracy of the neutrino family under consideration. This parameter is equal to one by
default, but you can decrease (or increase) the contribution of each family by varying this parameter. In
the code, it acts as a multiplicative factor in front of the momentum distribution function of the given
family, therefore altering its contribution to Neff . While we normally do not want it to vary in the case of
active neutrinos, it may be useful for the sterile case. The parameter deg ncdm renormalizes the neutrino
momentum distribution function with a constant, which is equal to ∆Neff if one considers a Dodelson-
Widrow model for the thermalization of the new state. Figure 4 shows the effect of adding one sterile
neutrino with different degeneracy parameters (deg ncdm equal to 0.1, 0.5, 1).

2 MontePython (optional)

In this last section, we will apply what we learned until now to perform a Markov Chain Monte Carlo
(MCMC) scan with MontePython, to study cosmological constraints on sterile neutrino properties. Although
the method under consideration can be easily adopted to perform a real analysis, in this example we will
use fake cosmic microwave background data to save computation time and installation problems.

MontePython is a software, developed in python, which uses CLASS to compute the cosmological observ-
ables. After downloading the code, firstly we have to indicate in default.conf the path to our CLASS folder.
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Figure 4: Comparison of the TT spectrum for different neutrino models.

You can copy and edit default.conf.template to have an example on how to write the configuration. After
this is done, we can check if it works using a simple example:

python montepython/MontePython.py run -o test -p input/example.param

This will create a test folder and run a very short MCMC with the configuration stored in input/example.param.
If you open this file, you will see that it defines a run considering a fake Planck likelihood (the experi-
ments are defined in the list data.experiments=[’fake planck bluebook’]), performing a scan over the
six parameters that describe the standard cosmological model, called ΛCDM (see the lines starting with
data.parameters), and computing only 10 MCMC steps.

If it worked, we can configure a run that also considers the sterile neutrino parameters. MontePython

accepts as physical parameters anything that constitutes a valid input for CLASS, plus a few more, mostly
managed by the update cosmo arguments function in montepython/data.py. This means that the names of
the parameters we have to vary are those discussed in the previous sections: we have to fix N ur, N ncdm > 1,
m ncdm and deg ncdm appropriately. One possible example, considering deg ncdm = 1 by default, is:

data.parameters[’m_ncdm’] = [1., 0, 10, 0.5, 1, ’cosmo’]

data.cosmo_arguments[’N_ur’] = 3.044

data.cosmo_arguments[’N_ncdm’] = 1

Notice the syntax for defining fixed parameters that must be passed to CLASS (data.cosmo arguments[...]=...).
The syntax for varying parameters, instead, is: [mean, min, max, 1-sigma, scale, role]. In details:

• “mean” is the initial value for the parameter.

• “min”, “max” define the allowed range (they can be None if the range is irrelevant).

• “1-sigma” defines the expected final 1σ range, but is actually used only for defining the initial MCMC
steps.

• “scale” can be used to renormalize the parameter.

• “role” can be “cosmo” (CLASS parameters), “nuisance” (internal parameters of some likelihood), “de-
rived” (parameters computed by CLASS from the available “cosmo” parameters).

In case we want to vary more than one neutrino mass at the time, we have to pay attention to the fact
that MontePython considers each mass as an independent parameter, so that they cannot go in the same list
in MontePython and they need to be stored with a different syntax. Let us consider a case with two massive
neutrinos (data.cosmo arguments[’N ncdm’] = 2), for example: in CLASS we would write m ncdm=0.05,1.
In MontePython, we have to use:

6



data.parameters[’m_ncdm__1’] = [1., 0, 0.1, 0.01, 1, ’cosmo’]

data.parameters[’m_ncdm__2’] = [1., 0.1, 10, 0.5, 1, ’cosmo’]

In this way, MontePython will concatenate the varying parameters in a single m ncdm with the appropriate
values before passing it to CLASS.

To summarise, in order to perform a MCMC analysis including the six parameters of the ΛCDM model
plus three massless neutrinos and one massive sterile neutrino, we have to add few lines to those existing in
input/example.param. It is better to copy the file into a new one (nus.param, for example) and add the
following lines to the new param file:

data.parameters[’m_ncdm’] = [1., 0, 10, 0.5, 1, ’cosmo’]

data.parameters[’deg_ncdm’] = [1., 0, 3, 0.2, 1, ’cosmo’]

data.cosmo_arguments[’N_ur’] = 3.044

data.cosmo_arguments[’N_ncdm’] = 1

It is good to keep data.N=10 in the param file, as it will save us from very long runs if we submit by mistake:
this value is easily overwritten at runtime. Let us now perform a very short run to check that the setup
works:

python montepython/MontePython.py run -o nus -p nus.param

Some output will appear in your terminal, possibly ending with a list of obtained points and a resume line
such as # 10 steps done, acceptance rate: 0.4, if everything worked.

We can now perform a longer run, which we will use to extract the parameter constraints. Notice that
if we use the same output folder, we do not need to specify again the param file, as MontePython will use
the one stored in the folder itself during the previous run. A possibility to speed-up the computation is to
give to MontePython an estimate for the covariance matrix of the parameters, with the option -c. Several
of them are available in the covmat/ folder, you may want to use the covmat/fake planck lcdm.covmat,
which at least implements correctly the correlations for the six parameters of the ΛCDM model. Even with
the covariance matrix, it is convenient to reduce the initial jump factor (option -f) from the default value
2.4 to something like 1.2. This will increase the initial acceptance of points while reducing a bit the speed
of exploring the parameter space, but in any case the jump is adjusted while the MCMC proceeds. Finally,
we have to specify the number of points that we want to compute, instead of the N=10 defined in the param
file, but this is easily done adding the option -N, let’s say with 10000 points:

python montepython/MontePython.py run -o nus -N 10000 -c covmat/fake_planck_lcdm.covmat -f 1.2

This command will take several hours to complete. Notice also that 10000 points are probably too few for
a decent analysis, and that running with the real likelihoods generally takes a bit longer. Here, however,
we just want to understand how to use MontePython and not to reproduce Planck constraints or obtain
competitive results, for which longer computation times are required.

Once it finished (or during the run, if you are impatient), you can check what MontePython stores in the
nus folder. You will notice a log.param file, which is basically a copy of your input param file, a log file, and
a list of *.txt and *.paramnames files, which store the MCMC points and the names of the parameters. In
order to analyze the files and produce some default plots, we can use the MontePython info command:

python montepython/MontePython.py info nus

If the length of the chain is not sufficient (easily possible with N=10000), you will see an error message,
otherwise some plots and various other files will be stored in nus/ and nus/plots/.

Assume you ran a sufficiently long chain, what you obtain is something like the set of files you will find
at http://personalpages.to.infn.it/~gariazzo/courses/2103_GGI_nus/nus.tar.gz. Download and
extract the compressed file: you will see the chain files, some useful output files generated with the info

command (*.bestfit, *.h info, *.v info, *.tex, *.covmat) and a plots/ folder. Can you extract the
upper limits on ∆Neff and ms? What do they tell us about the presence of a sterile neutrino in the universe?
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