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3 Respond at pollev.com/byrnes

SR inflation: Select the true statement

100%

Single-field inflation must
create PBHs

Primordial tensor perturbations
have been detected

The primordial perturbations
cannot be exactly scale invariant

The primordial perturbations
are strongly scale depedent

None of the above

. Start the prasentation Lo s=e live content. For screen share soflware, share the entire screen. Get he.p at pollev.comjapp .
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USR inflation: Which statement is true?

About 1 efold of USR inflation leads to PBH production

More than 2 efolds of USR inflation leads to eternal inflation

An order unity primordial power spectrum implies eternal
inflation

You can evaluate the power spectrum at Hubble exit during
USR inflation

None of the above
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https://arxiv.org/pdf/1807.06211.pdf
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'What;is‘ the Universe made of?

By eye, we see stars
and a few planets
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Observations
from starlight

Velocity
. (km s1)

: Expected from
the visible disk

* 10,000 20,000 30,000 40,000

Distance (light years)

Coma galaxy cluster By NASA / JPL-Caltech By Mario De Leo - Own work, CC BY-SA 4.0, _
https://commons.wikimedia.org/w/index.php?curid=74398525

Fritz Zwicky used galaxy clusters to postulate ) )
«dunkle materie” in 1933 Vera Rubin measured galaxy rotation

curves from the 1960s



CQId dark matter L_'

. o The eﬁnce meludes‘galaxy rotatlon Curves galaxy
‘| cluster velocities and the’ buIIet cluite _

. Black Holesare cold and'dark B e

. A '. '.‘.. ) . ' -
ot However the grewth of structure frcfﬁ the, CMB il tog
prOves DM 'must havé foffed befere the CMB Does ths

- rule out black holes as dark matter? e s
o Ndﬂf th'ey,are.qrpprdj.éu P e,

-\ 2 ‘. . ‘ ® " : '\. A



By the 1980s nearly all cosmologists accepted the need for dark matter
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ESO Video News Reel 46/08

Unprecedented 16-year long study tracks
stars orbiting Milky Way black hole.

B-roll

European Southern Observatory
Copyright ESO 2008

Edited from the European Space Observatory 2008




Nobel Media. I/l. N klas © Ncbel fMediz. Il Niklas Nobe Mediz. |l Nik as

—Imehed. Eimehed. Eimehed.

Roger Penrose Reinhard Genzel Andrea Ghez

Prize share: 1/2 Prizeshare: 1/4 Prize share: 1/4

https://www.nobelprize.or rizes /physics /2020 /summa

The Nobel Prize in Physics 2020 was divided, one
half awarded to Roger Penrose "for the discovery
that black hole formation is a robust prediction of
the general theory of relativity", the other half jointly
to Reinhard Genzel and Andrea Ghez "for the
discovery of a supermassive compact object at the
centre of our galaxy."



The event horizon telescope

A supermassive black hole in a nearby galaxy

https:/ /www.space.com/event-horizon-telescope-black-hole-photos-future.html




Dark matter might not be a new particle

 The unique alternative in GR are primordial black holes
(PBHs)

Zel’dovich and Novikov 1967; Hawking 1974, Carr and Hawking 1974

* The existence of black holes which formed in the early
universe requires special initial conditions but not new
physics

e |f detected, PBHs would teach us a lot about the early
universe and inflation

e PBH reviews include: Sasaki et al ’18; Carr & Kuhnel '20;
Green & Kavanagh ‘20
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Black holes

Three populations have been observed
1. “Light” BHs with 5-20 Mo which formed via stellar collapse

2. Supermassive BHs 106-1010 Mo, in galactic centres - formation process

uncertain
3. Intermediate mass BHs up to 40 M, detected by LIGO

BHs can form in the “late” Universe via stellar or gas cloud collapse within
certain mass ranges.

Primordial Black Holes (PBHSs) could have also formed in the early Universe
(during the first second) and may have any mass whatsoever

PBHs below the Tolman-Oppenheimer-Volkoff neutron star mass limit are of
special interest (about 2 times the Chandrasekhar mass), since they would be a
smoking gun for a primordial origin. Those below the Chandrasekhar mass
would be an even clearer signature.

Bambi review 2017
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Masses in the Stellar Graveyard

in Solar Masses
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Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 1 Mar 2016 (v1), last revised 30 May 2016 (this version, v2)]

Did LIGO detect dark matter?

Simeon Bird, llias Cholis, Julian B. Munoz, Yacine Ali-Haimoud, Marc Kamionkowski, Ely D. Kovetz,
Alvise Raccanelli, Adam G. Riess

We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark
matter. Interestingly enough, there remains a window for masses 20My < My, < 100 M where
primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently
close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs
will rapidly spiral inward due to emission of gravitational radiation and ultimately merge. Uncertainties in
the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos
on the smallest scales. Still, reasonable estimates span a range that overlaps the 2 — 53 Gpc™> yr~! rate
estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH
mergers are likely to be distributed spatially more like dark matter than luminous matter and have no
optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional
astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic
gravitational wave background. Next generation experiments will be invaluable in performing these tests.

Comments: 5 pages, 2 figures, updated to match version published in PRL

Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); High Energy Physics - Phenomenology (hep-ph)
Journal reference: Phys. Rev. Lett. 116, 201301 (2016)

DOI: 10.1103/PhysRevLett.116.201301

Cite as: arXiv:1603.00464 [astro-ph.CO]
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The LIGO events

e |t appears unlikely that more than 1% of the dark matter
can be made out of LIGO mass PBHs

e But all of the LIGO BHs could be primordial

e Black holes have no hair, so how can we know?
Total mass
Mass ratio
(Spin, redshift distribution and location)

25



LIGO /Virgo - gravitational wave hunters

»
N
-

2

& httpS: / /www.ligo.org/ public.vfj_ﬁ%'l




-au@n

ek

PO Peag——_ SLTNIR

What happens in a black hole... &
stays in a black hole.
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A new way to “see” the universe
Black holes and neutron stars have been seen merging




The three merger phases
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Black hole spin - in isolation favours PBHs
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Model comparison based on spins

Fernandez & Profumo 19, Garcia-Bellido et al "20,
Wong et al 2020 (uses 03a data)

However, we find that by far the strongest
constraining power comes from the masses

PBHs do not undergo much collapse before formation, small spin expected
Belczynski et al. 17; Mirbabyi et al '19; De Luca et al '19, Harada et al 20 + many more



Has LIGO detected DM PBHs?

The Bayesian evidence ratio

Za R p(]\"fAld) p(ﬁ"fA) fp(d|9,fw,4)p(9|]\ff,4)d9

Zs  p(Mg|d)  p(Mp) [ p(d|0Y Mp)p(0'|Mz1d6

Population parameters, i.e. mass function
parameters, PBH abundance etc.

Hall, Gow, CB, 2020: Bayesian comparison
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Key ingredients

We perform a Bayesian model comparison, where the two models are
either all black holes are astrophysical or all are primordial

We marginalise over the PBH merger rate, by assuming a functional form
of the PBH mass function and then fit the free parameters to the data

This typically means fitting a peak mass, a width, and an amplitude (freH)
We take broad priors on all parameters

For the astrophysical model we take the empirical models A and B from
LIGO-Virgo 02 results, which captures some key physics such as the
lower and upper mass cut offs and power law dependence on the upper
mass and the mass ratio

32



Varying the PBH mass function width (sigma)

Wide enough to fit the masses, yet not so wide to stop g~1
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The “astro” distribution covers a broader range of total masses than sigma=0.3,
but it still prefers the mass ratio g~1. A monochromatic mass function is ruled out.

13 Gow, CB, Hall, Peacock 2019
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FIG. 11: Differential detector-frame merger rates with respect to total mass (left panel), mass ratio (middle panel) and redshift
(right panel) for LIGO Model A (blue), the lognormal PBH model (orange) and the lognormal PBH model with suppression
factor set to unity (green). In each case we plot the median and 90% quantiles over the posterior samples for each model given
the GWTC-1 data (solid lines and shaded bands), and the (weighted) mean over the samples (dashed lines).

Hall, Gow, CB, 2020: Bayesian comparison

PBHs are better are explaining events with a small mass ratio, but don’t
naturally explain the upper and lower mass gaps predicted by stellar models
PBHs are more flexible at explaining individual events
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log o m,. (M)

logy @

Fitting a lognormal mass function

log., fomn = —2.301 ;%8

Many other groups have made similar fits
However, a best fit analysis does not give any
handle on whether the best fit is also a good fit
Hall, Gow, CB, 2020

logyg me [ Me| = 138

logyya = —0.09703
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Bayesian results

Our models are: All mergers are due to PBHs vs all due to stellar BHs
We use 01/02 data only and carefully use the LIGO sensitivity curve.

The Bayesian evidence can be approximated as the likelihood of the
best fit model * the Occam factor

Both are important but the Occam factor is prior dependent and more
controversial

PBHs are disfavoured by both terms - assuming the “normal”
lognormal mass function

PBH models are disfavoured decisively
In ZPBH/Zst.ella.r — —ana= )k
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Is the lognormal mass function correct?

| e e e e e e

True

0020} -9"OMal / N\
Gaussian
 EMG /
Skew-normal /
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0.010
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0.005
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For a Dirac-delta function power spectrum m (Mg) Gow. CB. Hall 2020
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Trying hard to fit the data - cutoff or bimodal mass function

LICO Model A
LIGO NModel B
PBH, S =1
NMmae = 00 M.
PBH, S =1

bimodal skew-lognormel

]

© 0.044

[

0,034

0071 4

Posterior predictive distribution [/

Hall, Gow, CB, 2020
0004

! T L T 1 1l 1' 1 T
J 10 20 30 40 50 60

M chirp [1\1"

These alternatives are a better fit, but still not a good fit compared to the stellar models
The late time PBH capture and merger is also a bad fit

Accretion broadens the mass function at large masses (de Luca et al '20): => worse fit
39



LIGO-Virgo conclusion

Now a consensus that LIGO-Virgo is exclusively or primarily
seeing astrophysical black holes: Mixed astrophysical + PBH
models also studied - Bhagwat et al 2020, Hitsi et al 2020

The BH properties are somewhat unexpected but modelling
stellar collapse is hard

Mixed astrophysical + PBH models remain possible

A sub Chandrasekhar mass compact object would be the
best evidence and could be seen with the current
experiments
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LIGO & Virgo collaboration




Sub-solar mass GW searches

GW searches have been made, with no detections so far.
The right hand figure shows the distance to which an equal mass merger could

be detected.
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LIGO-Virgo PBH connection?

dvocates of the primordial black hole hypothesis still have a lot
A of convincing to do. Most physicists still believe that dark
matter is made of some kind of elementary particle, one that’s
devilishly hard to detect. Moreover, the LIGO black holes aren’t too
different from what we would expect if they came from ordinary stars.
“It sort of fills a hole in the theory that isn't actually there,” said Carl
Rodriguez, an astrophysicist at Carnegie Mellon University. “There are

things that are weird about some of the LIGO sources, but we can

explain everything that we’ve seen so far through normal stellar

evolutionary process.”

https://www.quantamagazine.org/black-holes-from-the-big-
bang-could-be-the-dark-matter-20200923/?
fbclid=IwAR2GgvelVyYAEKvZTfitlVJ;AEgwnvTwpgp6 TNHfNrtS1
SHin6hX6Gy7L5BY
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PBH formation and
QCD transition



1.

3.

PBH formation

They could form from large
amplitude density
perturbations shortly after
horizon entry

Causality prevents collapse
before horizon entry

Approximate 1-to-1 relation
between horizon entry time,
horizon length and PBH
mass
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The density profiles are related to the power spectrum shape

The 2-point correlation function of the density “predicts” the density near peaks
and shows that spherical symmetry is a good approximation

(BBKS 1986 classic paper, non-spherical effects Kiihnel & Sandstad 2016)

The density profile does not change strongly assuming a smooth peak in the
primordial power spectrum, independently of the width

1.5 Ll T T T l T T T T l T T T T

______ broad spectrum

narrow spectrum —

op./ Py

0.5 |-

Germani & Musco 2018
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A cosmological
coincidence

e PBHs form quickly due to
gravitational collapse as soon as
the relevant scale enters the
horizon (becomes causal)

e For every given mass, there is a
corresponding scale and
temperature during the early
Universe. QCD transition: t~10-6s,

T~200MeV, M~1 Mo, k~107 Mpc-T

e The horizon mass has grown by
about 50 orders of magnitude since
the end of inflation. The QCD phase
transition occurs during the time
when LIGO mass PBHs formed.
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The QCD transition

Strong interactions confine quarks into hadrons and the equation-of-state
parameter w decreases. Crawford & Schramm 82, Jedamzik 98

QCD transition: t~10-6s, T~200 MeV, M~1 Mo, k~107 Mpc-1
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CB, Hindmarsh, Young & Hawkins 2018 using Borsanyi et al 2016
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Thermal history

In terms of PBH production, the QCD transition is the most
important in standard model physics
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The resultant PBH-QCD mass function
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The QCD phase transition took place during the time when LIGO mass PBHs would
have formed. It boosts the formation rate of solar mass PBHs by 2 orders of magnitude
These are below the Chandrasekhar mass - potential proof of PBHs

No detection: LIGO & Virgo collaboration 2019, Magee et al 2019
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Varying the primordial perturbations

If the primordial power spectrum is not scale invariant on the relevant
scales then the mass function changes, but a peak remains
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Observational constraints

To be discussed on Friday



Observational constraints
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feea = Q2peu/pMm

The uncontroversial PBH=DM window
“Asteroid” or “LISA” mass range
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Redshift dependent constraints

z~ QO[10]

2~ O1)
N

z ~ O(0)

FIG. 2. Sketch of the limits shown in Figure 1 for different redshifts. Here, we break down the large-scale structure
limit into its individual components from clusters (Cl), Milky Way galaxies (Gal) and dwarf galaxies (dG), as
these originate from different redshifts (cf. Reference [145]). Further abbreviations are defined in the caption of
Figure 1.

Carr & Kuhnel 2020
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“Time dependent” constraints
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Katz et al 2018 “Femtolensing revisited”; see also Sasaki et al 2017 Review

The constraints have shifted and some have disappeared over time Niikura et al ‘18
Potential NS destruction constraints via PBH capture was discussed already
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This bound was eliminated in 6 days

[Submitted on 8 Mar 2021 (v1), last revised 14 Mar 2021 (this version, v2)]

Eliminating the Remaining Window for Primordial Black Holes
as Dark Matter from the Dynamics of the Cold Kuiper Belt

Amir Siraj, Abraham Loeb

The nature of dark matter (DM) is unknown. One compelling possibility is DM being composed of
primordial black holes (PBHs), given the tight limits on some types of elementary particles as DM. There is
only one remaining window of masses available for PBHs to constitute the entire DM density,

107 — 10%* g. Here, we show that the kernel population in the cold Kuiper belt rules out this window,
arguing in favor of a particle nature for DM.

Comments: KBO limit had to be modified to the diffusion regime which weakened significantly the constraints
Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CQO)
Cite as: arXiv:2103.04995 [astro-ph.CO]

(or arXiv:2103.04995v2 [astro-ph.CQ] for this version)
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Constraints on the initial PBH mass fraction

MM,
10735 1073 10725 10720 10715 10710 105 1

1 [ I | | | [ |

105 101 1015 102

L T T

i Planck

Inflation .

'R ST T TSR U AR RN AT RN R TSN U NSNS NN U N S
102 100 10%= 10 10* 10°° 107
M [g]

10_30_,.,. A PR BRI [ B
107° 1 100 10 10" 10%

frpu = ZEBH |~ PPBH) o Jed g https://arxiv.org/pdf/2002.12778.pdf

PDM Ptot Aform
g 58




The Initial conditions
of the universe



From very large to very small scales

 We have the “precision era” measurements on CMB
and LSS scales

* These span approximately the largest 5-10 efoldings
which are inside the Hubble scale today

* Lyman alpha, 21cm and spectral mu distortions in the
CMB may add a similar range of scales in the (farish)
future

 But inflation is believed to have lasted at least 50-60
efoldings

* So we only observe a small fraction of all scales

» Limits our ability to constrain the early universe
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Why can’t we observe small scales?

- We do accurately observe small scales, such as
our solar system

- However, radiation pressure/chaotic solutions of
gravitational collapse mean that the memory of
initial conditions on small scales is erased

- We can measure the primordial perturbations only
on scales which remain linear today (> 1 Mpc)
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Current power spectrum constraints

¢ 100 1000

L0

3=

Planck 2015
“constraints on inflation

Fig.26. Bayesian reconstruction of the primordial power spec-
trum averaged over different values of N, (as shown in
Fig. 24), weighted according to the Bayesian evidence. The re-
gion 30 < € < 2300 1s highly constrained, but the resolution is
lacking to say anything precise about higher £. At lower £, cos-
mic variance reduces our knowledge of Pg(k). The weights as-
signed to the lower N, models outweigh those of the higher
models, so no oscillatory features are visible here.

-+ Featureless power law over 1 decade in scales (or 10g(2300/30)=4.3 efolds)
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A boosted power spectrum

In order for such compact objects to form, the primordial power spectrum
needs to be boosted by 5 - 7 orders of magnitude above the value observed on
large scales. Exactly how much depends on the equation of state and whether
the perturbations are Gaussian

10_2 0.01

.~‘r

[

"Background” (CMB)

scales

Intermeadiate scales

"Peak” (PBH) scales

T k
R T S Nfzbg<
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Young and CB 2015
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Ultra-slow-roll inflation (inflection point)
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Canonical single-field slow-roll inflation cannot produce any PBHs
Lots of activity on calculating PBH production from ultra-slow-roll inflation
All such models require two fine tunings: The duration of the inflection point and the
exponential dependence of frgH On the resulting amplitude
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Hybrid inflation

 Hybrid inflation: popular model in which a second stage generates much
larger small scale perturbations (also highly non-Gaussian)

1st stage from inflaton field,
Gaussian perturbations

'V’

2nd stage from waterfall field - tachyonic
instability, non-Gaussian perturbations

. '
-

s
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Growth of perturbations

» Sensitive to steepness of waterfall phase
* The steeper it is, the quicker inflation ends

« PBHs constrain the waterfall phase to last less than ~5 efolds of the 50 required

o.osl
o.oel
Kawasaki and Tada 2015

w 0.041

0.02

0.00

/

End of inflation and the smallest ssales Observable scales



Particle production during inflation

P(k)

P(k;)T

P(kg)r

Erfani 2016

Power spectrum without particle production

- k[Mpc™
k; ko 1

This can produce a spike instead, and be tuned to occur at any mass/scale range
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Generic model building thoughts

* Jo produce any PBHSs, we need to power spectrum to grow
by ~ 7 orders of magnitude

 |If that happens, we should not use the usual spectral index (+
running etc) parametrisations of power spectrum

 If the spectrum turns blue, we expect the smallest scales to
form the most PBHSs

* To have a DM candidate other than relics, we instead need a
localised peak, e.g. transition between two phases of
inflation, an inflection point, particle production or a phase
transition
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GGravitational wave constraints

- GWs are a potential relic
- At linear order in perturbation theory; scalar, vector and tensor modes decouple
- Second-order tensor perturbations are sourced by scalar perturbations squared

- A large scalar power spectrum will induce GWs

Log(1+2)
‘ 0 3 H “3 18 23 7,‘8
csk
— = Qaw (k) == 30Q,2aP¢ (k)?
27
GeV\ > ;ﬂ
MPBH ~ (.1 T M@ 3
Review: Caprini and Figueroa 2018 ~~ 1 5 0o 5 10 16

Log(T [GeV])



CMB spectral distortions

COBE (FIRAS) showed that the CMB is extremely close to
being a black body with no chemical potential

But it can't be exactly so, must be some deviations on
smaller scales, eg from energy release into plasma (matter-
photon interactions)

Latter is silk damping, effective at small scales

Pixie (NASA) or Prism (L class, ESA) are proposed
missions to measure these distortions

Could open up another 7 efolds of inflation to be visible,
though with nothing like the current CMB precision



The initial conditions of the universe
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The 5th Wave By Rich Tennant

" < %
5"?“2‘.‘;; - ("-\ X 1‘_”;’.‘
'\l - . L

PAETAN
. . . « 00 &
Even things which might | e & @l e
. ) semmas "
not exist can matter! B
R
g aelgh
3 : \; < !‘—& \'l
LT 53
—~ &
o~ R R

“After the discovery of “antimatter’ and ‘dark matter’, we have just
confirmed the existence of ‘doesn’t matter’, which does not have
any influence on the Universe whatsoever.”
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The dashed lines shows the current constraints, the solid lines show
the “ideal” constraint of zero PBHs inside the observable universe
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Relics: a nightmare scenario?

PBHs decaying today would emit Hawking radiation, those
decaying before BBN are invisible

Without a theory of quantum gravity we don’t know if they
evaporate to nothing or leave a Planck mass relic (solves
information paradox?)

Arguably this is the most likely PBH DM scenario, since it’s

“easier” to make the smallest scales amplitude larger and these
form the lightest PBHs - MacGibbon 1987

May be detectable if charged - Lehmann et al 2019
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Hawking-Radiation Recoil of Microscopic Black Holes

Samucl Kovacik !

' Faculty of Mathematics. Physics and Informatics, Comenmius Umiversity of Bratislava. Bratisiava, Slovakia
! Department of Theoretical Physics and Astrophysics, Facuity of Science, Masaryk University, Brno, Czech
Republac

Abstract

The Hawking radiation would make microseopic
black holes evaporate rapidly which excludes them
from many astrophysical considerations. However,
it has been argued that the quantum nature of
spacc would alter this behaviour: the temperature
of a Planck-size black hole vanishes and what is
left behind is a Planck-mass remnant with a cross-
section on the order of 10~ "m? which makes direct
detection nearly impossible. Such black hole rem-
nants have been identified as possible dark matter
candidales. Here we argue Lhal the final stage of
the evaporation has a recoil effect which would give
the microscopic black hole velocity on the order of
10~ *¢ which is in disagreement with the cold dark
matter cosmological maodel.

1 Introduction

Quantum theory of gravity is not known at the mo-
ment, yet we can assume some of its properties.
One of them is that space has a structure that be-
comes evident at the Planck scale. This iden is
not new and has been explored from various angles
11,2, 3,4,5,6,7].

A general feature of theories of quantum space is

+rha Invnnceililite Af Algtinoiching nainte aith core

as a mathematical tool or as an approximation. Yet
there is one prominent example where it is taken
to deseribe physical reality: the matter distribn-
Lion of & black hole is zero everywhere bul at one
point. Theories of quantum space often lack the
notion of exact point localisation and any matter
distribution is rendered nonsingular: regular black
holes have been studied before, for example in [8].
This affects behaviour of black holes size of which is
comparable to the fundamental length scale. One
of the striking difference compared to the ordinary
hlack hole theory is that the Hawking temperature
9] delined w be proportional to the surface gray
ity at the horizon does not grow indefinitely but
instead drops to zero at small but positive mass,
resulting in a microscopic black hole remnant.
Black holes remnants have been considered as
possible dark matter constituents [10]. Tn Lhe or
dinary space, small black holes evaporate rapidly.
In quantum space, thev can be eternal and are
very difficult to deteet due to their miniscule cross-
scction.  If they contributed significantly to the
overall dark matter density, proving it would be
difficult as direct detection seems to be impossible.
Cravitational collapse leading to black hole for-
mation or merger of two black holes can produce
gravitational waves carrying a significant, momen-
tum in a single direction, recoiling the resulting



Supersymmetry

Little Higgs

QCD Axions

Axion-like Particles

Littlest Higgs

https://physics.aps.org/articles/v11/48
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We search under the spotlight
- no reason to ever expect a DM detection?

Axion dark matter mass [log(eV)

22 21 20 19 18
-29 -18
_— L=
CMB/ BHSR
reionization
-19.6

Lyv-cf (this work)

Rogers & Peiris 2020
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https://www.groundai.com/project/dark-matter-studies-entrain-nuclear-physics/1

PBHs are a unique candidate in several ways, so worth detecting/excluding
We can at least improve the DM upper mass bound
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What if Planet 9 is a Primordial Black Ilole?
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https://arxiv.org/pdf/1909.11090.pdf

FIG. 1. Exact scale (1:1) illustration of a 5M; PBH. Note that a 10My PBH is roughly the size of a ten pin bowling ball.




What if one PBH was detected?

e \We would know what some of the DM was (and what it is not
- next slide)

* |t would be the oldest relic detected, predating the primordial
element abundance generated by BBN

» QOther potential relics include: gravitational waves, topological
defects such as cosmic strings, CMB spectral distortions,
ultracompact minihalos

* Requires non-trivial inflationary dynamics, perhaps with an
early-matter-dominated phase and/or topological defects.
PBH review article: Green 2015

79



WIMPs and PBHs are incompatible

1015 _Plkﬁk +  2=8.2e+03

. < 7=3.6e+03

Assuming WIMPs have the SNy 5 + 2=16e+03

standard, velocity independent e + 2=7.2e402

13 | # +  2=3.2¢+02

. . . 10 By +

cross section which gets the right %Jq}k + z=1det02

abundance, and MpgH>106 Msun. -

0

e
If feeH<1, then another DM 10 %
component is inevitable o

Steep and high density profiles 10%; ###
form around PBHSs (density~ r-9/4). Fy N

I 1hi 7 +
WIMPs would rapidly annihilate to 0" Steep r9/4 density profile +,
gamma rays. .
In contrast to ultracompact 106 1077 1074 107° 102
minihalos without a PBH seed. Tphy[kpe/h)
Gosenca et al 17, Delos et al ‘17 Adamek, CB, Gosenca & Hotchkiss 2019;
A detection of WIMPs or PBHSs Lacki & Beacom 2010; Eroshenko 2016;
may effectively rule out the Boucenna, Kiihnel, Ohlsson & Visinelli 2017
existence of the other The 3 papers above all find different profiles.

We made the first simulations of this scenario
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Looking forwards

LIGO/Virgo have many more events to come

The pulsar timing array (PTA) collaborations will firm up the
“detection” or reach a sensitivity which rules out PBH generation
from large amplitude scalar perturbations on LIGO related mass
scales

LISA and future ground based detectors will be sensitive to very high
redshift mergers + better probe of the spins, mass ratio, etc

Theoretical and numerical work, especially on the merger rate and
accretion, is required

The detection of a sub Chandrasekhar mass object is what | hope for
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Future constraints

m (Mg)
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The PBH lines
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zero PBHs
