
Tutorial 1: Sterile neutrino at reactor experiments – solutions

S. Gariazzo

March 24, 2021

The purpose of this first tutorial is to understand the phenomenology of sterile neutrinos at reactor
experiments. The results are obtained with GLoBESfit and plotted using python. If you have problems
in compiling GLoBESfit, you can download some output files from http://personalpages.to.infn.it/

~gariazzo/courses/2103_GGI_nus/globesfit.tar.gz.

1 Compare spectrum and rate constraints

The first thing to learn is how to use GLoBESfit to compute the χ2. Once GLoBESfit is properly installed and
compiled, we can produce the profiles using the source/glf rate and source/glf spectrum, respectively
to obtain the sum of the χ2 from all the rate or spectrum experiments. The contours for the first figure 1
are obtained using the following commands:

cd path/to/GLoBESfit

mkdir -p output/spectrum output/rate plots/

source/glf_spectrum -o output/spectrum/all.dat

source/glf_rate -o output/rate/all.dat

In both cases, the output files (output/spectrum/all.dat and output/rate/all.dat) contain the values
of log10 sin2 θ14, log10 ∆m2

41 [eV2] and the χ2. Since the scan is performed, by default, on N = 51 points per
variable, the files are 2601 lines long.

Here you can see an example where I used python to read the files and produce the figure:

import matplotlib.pyplot as plt #for plots

import numpy as np #numerical utilities

chi2 levels for contours at (0,) 1, 2, 3 sigma with 2 d.o.f.

levels = [0, 2.30, 6.18, 11.83]

class Dataset: #I will use a class to read the files and store some useful quantities

def __init__(self, filename, label="", c="k"): #initialize the class

self.filename = filename

self.color = c

self.label = label

self._read()

def _read(self): #read the .dat file

try: #check that the file exists and is readable

self.data = np.loadtxt(self.filename)

except (IOError, ValueError):

print("File not found or corrupted: %s"%self.filename)

return

try: #check that it is possible to extract all the columns correctly

self.s14 = 10** np.unique(self.data[:, 0])

self.dm41 = 10** np.unique(self.data[:, 1])

chi2 = self.data[:, 2]

except IndexError:

1

http://personalpages.to.infn.it/~gariazzo/courses/2103_GGI_nus/globesfit.tar.gz
http://personalpages.to.infn.it/~gariazzo/courses/2103_GGI_nus/globesfit.tar.gz

print("File content is not valid: wrong structure of indices")

return

try: #transform the last column in a 2D matrix

self.chi2 = chi2.reshape(len(self.dm41), len(self.s14)).T

except ValueError: #if it fails, the file is corrupted or incomplete

print("Wrong number of lines, cannot reshape the chi2")

return

self.minchi2 = np.min(self.chi2) #extract minimum of the chi^2

self.chi2 = self.chi2-self.minchi2 #replace chi^2 with Delta chi^2

plt.figure() #create an empty figure

#perform a loop, for each iteration we will have filename, color and label

for f, c, l in zip(

["output/spectrum/all.dat", "output/rate/all.dat"],

["r","b"],

["spectra", "rates"]

):

d = Dataset(f) #read the file f and store the objects in the class

plt.contour(#plot contours in a 2D plane

d.s14,

d.dm41,

d.chi2,

levels=levels, #define the levels using the standard Delta chi^2

colors=c,

linewidths=1,

linestyles=["-","-","--", ":"], #each contour has a different style

)

plt.plot(np.nan, c=c, label=l)

#set logscales

plt.xscale("log")

plt.yscale("log")

#set axis labels

plt.xlabel(r"$\sin^2\theta_{14}$")

plt.ylabel(r"Δm^2_{41} [eV2]")

#set axis limits

plt.xlim([1e-3,1])

plt.ylim([1e-2,10])

#set legend, adjust the layout and save the plot

plt.legend(loc="upper left")

plt.tight_layout()

plt.savefig("plots/spe_rat.pdf")

The code will save in a new file plots/spe rat.pdf something very similar to figure 1.

2 Compare single rate or spectrum experiments

The plots comparing some selected rate (figure 2) or spectrum (figure 3) experiments are obtained in a very
similar way with respect to the previous case. The only difference is that we need to use GLoBESfit with
some options, in order to compute the χ2 for some subset of experiments. While you are encouraged to try
all the combinations, here you will find the commands required to obtain the curves shown in the figures.
Notice that some of the curves were already obtained in the previous exercise.

groups of experiments excluded by the -b option for glf_rate:

0: Bugey-4 + Rovno 91

1: Bugey-3 (15 m+ 40 m + 95 m)

2: Gösgen (38 m + 46 m + 65 m) + ILL

2

10 3 10 2 10 1 100

sin2 14

10 2

10 1

100

101

m
2 41

 [e
V2]

spectra
rates

Figure 1: Comparison of 1, 2, 3σ constraints from rate and spectrum analyses of reactor antineutrino data.

3: Krasnoyarsk 87 (33 m + 92 m)

4: Krasnoyarsk 94

5: Krasnoyarsk 99

6: Savannah River (18 m)

7: Savannah River (24 m)

8: Rovno 88 (1I + 2I + 1S + 2S + 3S)

9: Nucifer

10: Palo Verde (750 m + 890 m)

11: Double Chooz (355 m + 469 m)

12: Chooz (998 m + 1115 m)

13: Daya Bay (EH1 + EH2)

14: RENO

source/glf_rate -b0 -b1 -b2 -b3 -b4 -b5 -b7 -b8 -b9 \

-b10 -b11 -b12 -b13 -b14 -o output/rate/sav18.dat

source/glf_rate -b0 -b1 -b2 -b3 -b4 -b5 -b6 -b8 -b9 \

-b10 -b11 -b12 -b13 -b14 -o output/rate/sav24.dat

source/glf_rate -b0 -b1 -b3 -b3 -b4 -b5 -b6 -b7 -b9 \

-b10 -b11 -b12 -b13 -b14 -o output/rate/rov88.dat

source/glf_rate -b0 -b1 -b2 -b3 -b4 -b5 -b6 -b7 -b8 \

-b9 -b10 -b12 -b13 -b14 -o output/rate/dc.dat

source/glf_rate -b0 -b1 -b2 -b3 -b4 -b5 -b6 -b7 -b8 \

-b9 -b10 -b11 -b13 -b14 -o output/rate/chooz.dat

source/glf_rate -b0 -b1 -b2 -b3 -b4 -b5 -b6 -b7 -b8 \

-b9 -b10 -b11 -b12 -b13 -o output/rate/reno.dat

groups of experiments excluded by the -b option for glf_spectrum:

#0: DANSS

#1: DayaBay

#2: NEOS

#3: DoubleChooz

#4: Bugey

#5: Reno

source/glf_spectrum -b1 -b3 -b4 -b5 -o output/spectrum/danss_neos.dat

source/glf_spectrum -b0 -b2 -o output/spectrum/no_danss_neos.dat

The plots can be performed using the same python code presented above, with few small variations:

3

import matplotlib.pyplot as plt #for plots

import numpy as np #numerical utilities

chi2 levels for contours at (0,) 1, 2, 3 sigma with 2 d.o.f.

levels = [0, 2.30, 6.18, 11.83]

class Dataset: #I will use a class to read the files and store some useful quantities

def __init__(self, filename, label="", c="k"): #initialize the class

self.filename = filename

self.color = c

self.label = label

self._read()

def _read(self): #read the .dat file

try: #check that the file exists and is readable

self.data = np.loadtxt(self.filename)

except (IOError, ValueError):

print("File not found or corrupted: %s"%self.filename)

return

try: #check that it is possible to extract all the columns correctly

self.s14 = 10** np.unique(self.data[:, 0])

self.dm41 = 10** np.unique(self.data[:, 1])

chi2 = self.data[:, 2]

except IndexError:

print("File content is not valid: wrong structure of indices")

return

try: #transform the last column in a 2D matrix

self.chi2 = chi2.reshape(len(self.dm41), len(self.s14)).T

except ValueError: #if it fails, the file is corrupted or incomplete

print("Wrong number of lines, cannot reshape the chi2")

return

self.minchi2 = np.min(self.chi2) #extract minimum of the chi^2

self.chi2 = self.chi2-self.minchi2 #replace chi^2 with Delta chi^2

#first figure

plt.figure() #create an empty figure

#perform a loop, for each iteration we will have filename, color and label

for f, c, l in zip(

["sav18.dat", "sav24.dat", "rov88.dat", "dc.dat", "chooz.dat", "reno.dat", "all.dat"],

["r","b","g","c","y","m","k"],

["sav18", "sav24", "rov88", "doublechooz", "chooz", "reno", "all"]

):

d = Dataset("output/rate/" + f)

plt.contour(#plot contours in a 2D plane

d.s14,

d.dm41,

d.chi2,

levels=levels, #define the levels using the standard Delta chi^2

colors=c,

linewidths=3 if "all.dat" in f else 1, #thicker lines for "all"

linestyles=["-","-","--", ":"], #each contour has a different style

)

plt.plot(np.nan, c=c, label=l)

#set logscales

plt.xscale("log")

plt.yscale("log")

4

#set axis labels

plt.xlabel(r"$\sin^2\theta_{14}$")

plt.ylabel(r"Δm^2_{41} [eV2]")

#set axis limits

plt.xlim([1e-2,1])

plt.ylim([1e-2,10])

#set legend, adjust the layout and save the plot

plt.legend(loc="upper left")

plt.tight_layout()

plt.savefig("plots/rates.pdf")

#second figure

plt.figure() #create an empty figure

#perform a loop, for each iteration we will have filename and color

for f, c in zip(

["all", "danss_neos", "no_danss_neos"],

["k", "#ff9933", "#669900"],

):

d = Dataset("output/spectrum/%s.dat" % f) #string formatting: replace %s with f

plt.contour(#plot contours in a 2D plane

d.s14,

d.dm41,

d.chi2,

levels=levels, #define the levels using the standard Delta chi^2

colors=c,

linewidths=3 if "all.dat" in f else 1, #thicker lines for "all"

linestyles=["-","-","--", ":"], #each contour has a different style

)

plt.plot(np.nan, c=c, label=f)

#set logscales

plt.xscale("log")

plt.yscale("log")

#set axis labels

plt.xlabel(r"$\sin^2\theta_{14}$")

plt.ylabel(r"Δm^2_{41} [eV2]")

#set axis limits

plt.xlim([1e-2,1])

plt.ylim([1e-2,10])

#set legend, adjust the layout and save the plot

plt.legend(loc="upper left")

plt.tight_layout()

plt.savefig("plots/spectra.pdf")

From the figure 2 we can see that some of the experiments provide an upper bound (Chooz, for example),
while others have a closed preferred region around sin2 θ14 ∼ 0.1. This is a consequence of the fact that
some experiments measure a rate in full agreement with the theoretical expectation, while others observe a
smaller rate (see e.g. slide 48 from the first part of the lectures). The fact that some of the experiments are
unable to constrain small mass splittings is a consequence of the distance at which each of them measures
oscillations: when ∆m2

41L/E is too small, there can be no constraint on the suppression of the observed
rate, because it cannot be generated by active-sterile oscillations.

In order to answer the last two questions, let us open a slightly different version of the last plot, which
you should now how to produce by now. Look at figure 4: you will notice that the most constraining
experiment at high mass splittings is DayaBay. The line is independent of the mixing angle at such large mass
splittings: oscillations are averaged out because of the smearing due to energy resolution of the experiment,
and averaging of osillations in the detector. The limit by DayaBay here is stronger than those of other
experiments thanks to the fact that DayaBay has three different detectors at different distances, and a very

5

10 2 10 1 100

sin2 14

10 2

10 1

100

101

m
2 41

 [e
V2]

all
sav18
sav24
rov88
dc
chooz
reno

Figure 2: Comparison of the constraints from few different rate analyses.

10 3 10 2 10 1 100

sin2 14

10 2

10 1

100

101

102

m
2 41

 [e
V2]

all
dayabay
danss_neos
no_danss_neos

Figure 3: Comparison of the constraints from few different spectrum analyses.

high number of events. Oscillations are averaged out at such distances, so one can use the global suppression
of the observed antineutrino spectrum at the different distances to decouple the effect of other oscillation
channels (θ13) from active-sterile oscillations, to finally obtain a constraint on θ14. Experiments such as
DANSS, operating at 10-12 m from the nuclear reactor, cannot do this because for the considered ∆m2

41 it
cannot measure the unoscillated flux (oscillations are already present at ∆m2

41L/E ∼ 10 eV2×10 m/4 MeV
for the nearest detector position), nor the global suppression of oscillations at large distances (they are not
completely averaged out at the farthest detector position).

You will also be able to see that at the smallest ∆m2
41, DANSS is not competitive with NEOS, Double-

Chooz, DayaBay and RENO. Again, the reason is that these experiments have detectors located at larger dis-
tances from the reactors providing the antineutrino flux. Oscillations due to ∆m2

41 . 0.1 eV2 in the DANSS
detectors, even at the farthest position, cannot develop because the term ∆m2

41L/E . 0.1 eV2×10 m/4 MeV
is too small. DayaBay, working at much larger distances and with higher statistics, provides instead strong
constraints. This is not a surprise: remember that it is designed to be able to probe active neutrino oscilla-
tions at ∆m2

31 ∼ 2.5 × 10−3 eV2 with very high precision.

6

10 4 10 3 10 2 10 1 100

sin2 14

10 2

10 1

100

101

102

m
2 41

 [e
V2]

all
danss
dayabay
neos
doublechooz

Figure 4: Comparison of the constraints from few different spectrum analyses.

3 Reactor flux models

For the final plot, shown in figure 5 we have to compute the contours with the different models for the
reactor antineutrino flux:

source/glf_rate -S -o output/rate/all_S.dat

source/glf_rate -M -o output/rate/all_M.dat

source/glf_rate -H -o output/rate/all_H.dat

Again, the plot is performed using the same codes shown before, so I will not repeat the new one here.
You can notice from the figure that the results can change significantly if a different antineutrino flux
is considered, or if possible systematic errors are taken into account. The revisited constraints are more
compatible with the results from spectrum experiments. Remember also that spectrum measurements are
almost independent of the theoretical antineutrino flux.

10 2 10 1 100

sin2 14

10 2

10 1

100

101

m
2 41

 [e
V2]

HM
HM+sys
SM
HKSS

Figure 5: Comparison of the constraints from the rate experiments using different models for the reactor
antineutrino flux.

7

	Compare spectrum and rate constraints
	Compare single rate or spectrum experiments
	Reactor flux models

