
EXERCICES SOLUTIONS: COSMIC RAYS AND MULTIMESSENGER ASTRONOMY
Markus Ahlers and Yoann Génolini

Cosmic rays: lectures 1 and 2

EXERCISE 1 - FERMI ACCELERATION
(i) We have at t = 0, N0 particles with energy E0.

N0 = Nin +Nout , (1)

so that,
dNout

dE
=

d(N0 −Nin)

dE
= −dNin

dt

/dE

dt
=
τacc
τesc

Nin

E
=
τacc
τesc

N0 −Nout

E
(2)

Integrating this differential equation gives:

Nout(E) = N0

(
1−

(
E

E0

)− τacc
τesc

)
(3)

Therefore dNout/dE ∝ E−α with α = 1 + τacc/τesc.
(ii) In the strong shock limit with γ = 5/3:

lim
M→∞

v1
v2

=
γ + 1

γ − 1
= 4 (4)

The spectral index is

α = 1 +
τacc
τesc

= 1 +
3

v1/v2 − 1
= 1 +

3

3
= 2 (5)

EXERCISE 2 - EXTENDED AIR SHOWER
(i) From p = kBTn we get:

n(0) =
p

kBT
' 105N/m2

273K1.4× 10−23J/K
' 2.6× 1025m−3 . (6)

(ii) Equal chemical potentials across atmospheric layers imply:

kBT ln(n(0)/nQ) = kBT ln(n(h)/nQ) +Mgh . (7)

This can be solved for n(h) = n(0)e−h/` with ` = kBT/Mg. Note that the quantum density drops
out in the difference of logarithms. Note, that this is only an approximation. For instance, the rotational
degrees of freedom of dinitrogen contribute to the total chemical potential as well.

(iii) For nitrogen we have

` =
kBT

Mg
' 273K1.4× 10−23J/K

28u9.81m/s2
' 8.2km (8)

The integral gives 1 = σCR`n(0) exp(−hCR/`) which can be solved as

hCR = ` ln(σCR`n(0)) ' 19.4km . (9)

This is the right order of magnitude. A more sophisticated atmospheric model gives somewhat larger
values.
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EXERCISE 3 - SOLAR POTENTIAL
(i) Using spherical coordinates and a spherical wind we have

∇ · (K · ∇n) =
1

r2
∂

∂r

(
r2K

∂n

∂r

)
(10)

∇ · (Vn) =
1

r2
∂

∂r

(
r2V n

)
(11)

∂

∂p

(p
3

(∇ ·V)n
)

=
∂

∂p

(
p

3

1

r2
∂

∂r
(r2V )n

)
(12)

Using n = 4πp2f , we can rewrite the last term using the expression

∂

∂p

(
p3

3

1

r2
∂

∂r
(r2V )f

)
= p2

1

r2
∂

∂r
(r2V f) +

1

r2
∂

∂r

(
r2
p3

3
V
∂f

∂p

)
− V

3

∂

∂p∂r

(
p3f
)

(13)

Combining these terms in the steady-state equation gives the desired expression.

(ii) Inserting the expressions for K� and V� gives:

eV� =
1GeV

3
× 4× 107

cm

s
× 10−22

s

cm2
×
∫ ∞
1AU

dr′e−
r′

1AU ' 7MeV , (14)

(iii) With this modified ansatz we get:

∂p

∂r
=
V�(r)

3

p2/3p
1/3
0

K�(r, p0)
, (15)

This can be solve via:
p(∞)∫

p(r⊕)

dp′p′−2/3 =
p
1/3
0

3

∞∫
r⊕

dr′
V�(r′)

K�(r′, p0)
(16)

We obtain:

(cp(∞))1/3 − (cp(r⊕))1/3 =
(cp0)

1/3

9

∞∫
r⊕

dr′
V�(r′)

K�(r′, p0)
(17)

EXERCISE 4 - DEFLECTION OF UHE CRS
(i) Larmor radius of 1020 eV protons (Z = 1) in magnetic field B = 10−9 G is:

RL =
cp

ZeB
' 3.34× 1024m ' 108 Mpc (18)

The maximal deflection angle ∆ψ off the true position of a source at d = 10 Mpc follows from a
magnetic field perpendicular to the line-of-sight:

sin ∆ψ =
d

2RL
(19)

For small angles one can Taylor-expand sin ∆ψ ' ∆ψ +O((∆ψ)3) and arrive at

∆ψ ' d

2RL
' 2.7◦ (20)

(i) The arc length is 2∆ψRL and therefore the CR delay compared to light emitted at the same time is

∆t =
2∆ψRL − d

c
(21)
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Now, here we have to be a bit careful since we are subtracting two large numbers to find a small dif-
ference. Using our first order Taylor-term for ∆ψ would give us ∆t = 0, so we have to go to the next
order:

sin ∆ψ ' ∆ψ − 1

6
(∆ψ)3 +O((∆ψ)5) , (22)

giving

∆ψ ' d

2RL
+

1

6
(∆ψ)3 , (23)

To leading order we get therefore

∆t ' 2∆ψRL − d
c

' 1

3

RL
c

(∆ψ)3 ' 11600yr (24)
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