EXERCICES SOLUTIONS: COSMIC RAYS AND MULTIMESSENGER ASTRONOMY
Markus Ahlers and Yoann Génolini

Cosmic rays: lectures 1 and 2

EXERCISE 1 - FERMI ACCELERATION
(i) We have at t = 0, Ny particles with energy Fj.
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Integrating this differential equation gives:
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(ii) In the strong shock limit with v = 5/3:
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The spectral index is
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EXERCISE 2 - EXTENDED AIR SHOWER

(i) From p = kpTn we get:

P 10°N/m?
kT ~ 273K1.4 x 10-23J /K

n(0) ~ 2.6 x 10®°m 3. (6)

(ii) Equal chemical potentials across atmospheric layers imply:
kT In(n(0)/ng) = kT In(n(h)/ng) + Mgh . (7)

This can be solved for n(h) = n(0)e "¢ with ¢ = kpT/Mg. Note that the quantum density drops
out in the difference of logarithms. Note, that this is only an approximation. For instance, the rotational
degrees of freedom of dinitrogen contribute to the total chemical potential as well.

(iii) For nitrogen we have

kT  273K1.4 x 1072%J/K

14 ~
Mg 281u9.81m/s?

~ 8.2km (8)

The integral gives 1 = ocrn(0) exp(—hcr/¢) which can be solved as
hcr = ¢1In(ocrfn(0)) ~ 19.4km . )

This is the right order of magnitude. A more sophisticated atmospheric model gives somewhat larger
values.



EXERCISE 3 - SOLAR POTENTIAL
(i) Using spherical coordinates and a spherical wind we have
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Using n = 47p? f, we can rewrite the last term using the expression
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Combining these terms in the steady-state equation gives the desired expression.

(ii) Inserting the expressions for K and V; gives:
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(iii) With this modified ansatz we get:
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This can be solve via:
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We obtain:
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EXERCISE 4 - DEFLECTION OF UHE CRS
(i) Larmor radius of 102° eV protons (Z = 1) in magnetic field B = 1079 G is:
cp 24
= ~3.34 x 1 ~ 108 M 1
Ry ZeB 3.34 x 10“"m 08 Mpc (18)

The maximal deflection angle A1 off the true position of a source at d = 10 Mpc follows from a
magnetic field perpendicular to the line-of-sight:

sin Ay = % (19)
L

For small angles one can Taylor-expand sin Aty ~ A + O((Av)3) and arrive at

d
A~ — ~27° 20
e 20)

(i) The arc length is 2A R}, and therefore the CR delay compared to light emitted at the same time is
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Now, here we have to be a bit careful since we are subtracting two large numbers to find a small dif-
ference. Using our first order Taylor-term for Ay would give us At = 0, so we have to go to the next
order:

sin Ag) ~ Ag) — %(Aw)?’ +O((Ay)%), (22)
giving
Av =ty L agy (23)
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To leading order we get therefore
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At (Arp)3 ~ 11600y (24)



