Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation GGI, Florence, 15-19 March 2021

PARTICLE DARK MATTER

Laura Covi

Institute for Theoretical Physics Georg-August-University Göttingen

OUTLINE

- Lecture 1: Introduction to Dark Matter and cosmology
- Lecture 2 & 3:
 DM as Weakly Interacting Particles
- Lecture 4 & 5: Axions and Axionlike particles as DM, FIMPs/SuperWIMPs, etc...

LECTURE 1: OUTLINE

- Dark Matter evidence
- Introduction to Cosmology and global DM evidence
- Structure formation

DARK MATTER AND STRUCTURE FORMATION

CLUSTER SCALES:

The early history of Dark Matter: In 1933 F. Zwicky found the first evidence for DM in the velocity dispersion of the galaxies in the COMA cluster... Already then he called it **DARK MATTER** !

CLUSTER SCALES:

Nowadays even stronger result from X-ray emission: the temperature of the cluster gas is too high, requires a factor 5 more matter than the visible baryonic matter...

CLUSTER SCALES:

Systems like the Bullett cluster allow to restrict the self-interaction cross-section of Dark Matter to be smaller than the gas at the level

 $\sigma \leq 1.7 \times 10^{-24} cm^2 \sim 10^9 pb \quad (m = 1 \ {\rm GeV})$ [Markevitch et al 03]

One order of magnitude stronger constraint by requiring a sufficiently large core... [Yoshida, Springer & White 00] Similar bounds from the sphericity of halos...

GALACTIC SCALES: Many density profiles, inpired by data or numerical simulations: Isothermal, NFW, Moore, Kratsov, Einasto, etc.... They mostly differ in the behaviour at the centre, either cusped or cored !

$$\rho(r) = \frac{\rho_0}{(r/R)^{\gamma} [1 + (r/R)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$

Critical for indirect detection !

DARK MATTER LOCAL DENSITY & VELOCITY DISTRIBUTION

[Catena & Ullio 09, 11]

Critical for Direct Detection !

HORIZON SCALES:

From the position and height of the CMB anisotropy acoustic oscillations peaks we can determine very precisely the curvature of the Universe and other background parameters.

INITIAL CONDITIONS

At recombination z ~ 1100 density/temperature fluctuations were at the order of 1/100000... How can they be the seed of structure today ?

FOLLOWING THE FLUCTUATIONS

We need seeds of small fluctuations, that were amplified by gravity & are the origin of the structure we see today

INFLATION: DRIVEN BY A SCALAR FIELD ϕ

INFLATON AS QUANTUM FIELD

Apart for the classical motion, there are fluctuations:

$$\phi = \varphi_c + \delta\varphi$$

In an inflationary (de Sitter) phase these are given by

$$\delta \varphi = \frac{H}{2\pi}$$

They remain imprinted in the metric and are stretched to cosmological scales !!! $\delta g_{\mu\nu}, \delta \rho, \delta p \sim 10^{-5}$ primordial fluctuations

How do fluctuations grow ?

What happens after such perturbations "re-enter" the horizon ?

In the Newtonian limit we have for the density perturbations of a matter fluid $\delta = \frac{\delta \rho}{\rho}$

$$\ddot{\delta}_k + 2H\dot{\delta}_k + \left(\frac{c_s^2 k^2}{a^2} - 4\pi G\rho\right)\delta_k = 0,$$

where $c_s = \delta p / \delta \rho$ is the sound speed in the plasma. Again a linear equation with a negative "mass" term... The fluctuations with negative mass grow and those have k below k_J , i.e. a physical wavelength larger than the Jeans length:

$$\lambda_J = rac{2\pi a}{k} = c_s \sqrt{rac{\pi}{G
ho}} \simeq rac{c_s}{H} \quad {
m sound \ horizon}$$

How strongly do they grow ? The growing solution is

$$\delta_k \sim C_1 H \int \frac{dt}{a^2 H^2} + C_2 H \sim C_1 t^{2/3} + C_2 t^{-1} \quad \text{for matter dominance}$$

NOTE: much weaker than exponential due to the expansion friction term $\propto H$! Also if the expansion is dominated by radiation, the growth is inhibited and at most only logarithmic in time. We need a long time of matter dominance to make initial fluctuations become large...

STRUCTURE FORMATION

V. Springel @MPA Munich

125 Mpc/h

z=18.3 (0.21 Gy)

125 Mpc/h

125 Mpc/h

z=5.7 (1 Gy)

125 Mpc/h

z=1.4 (4.7 Gy)

FLUCTUATIONS ON ALL SCALES

INTRODUCTION TO COSMOLOGY

EINSTEIN'S EQUATION: ENERGY IS GEOMETRY

$$\mathcal{R}^{\nu}_{\mu} - \frac{1}{2} \delta^{\nu}_{\mu} \mathcal{R} = 8\pi G_N T^{\nu}_{\mu} + \Lambda \delta^{\nu}_{\mu}$$

Einstein's Tensor: Geometry of Space-time Classical so far...

Energy-momentum Tensor: ALL the Physics content

Quantum

The birth of Cosmology as a science: the Universe's dynamics and fate is determined by its Energy (Particle) content, both the known and the unknown....

THE STANDARD MODEL

Our present understanding of the forces and particles is based on the symmetry group $SU(3)_c \times SU(2)_L \times U(1)_Y$.

It describes perfectly the data so far, but it is incomplete: - theoretically it does not explain flavour and the presence of 3 generations, nor why the Higgs is light... - it lacks a Dark Matter and inflaton candidate and also a mechanism to generate the baryon number...

WHICH MODEL BEYOND THE SM ?

Cosmology

(Collider-based) Particle Physics

To pinpoint the completion of the SM, exploit the complementarity between Cosmology and Particle Physics to explore all the sectors of the theory: the more weakly coupled and the more strongly coupled to the Standard Model fields... Best results if one has information from both sides, e.g. neutrinos, axions, etc... ???

STANDARD COSMOLOGY

Cosmological Principle (nowadays also experimental result...): The Universe is homogeneous and isotropic on large scales (i.e. larger than ~100 Mpc)

It is described by the Friedmann-Robertson-Walker Metric:

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2}d\Omega\right)$$

conformal to Minkowski for $dt^2 = a^2(\eta)d\eta^2$ $\kappa = 0$ • Only one dynamical variable: the scale factor a(t)• One constant parameter: the spatial curvature κ

1/2 Physics Nobel Prize 2006 to J. Mather for COBE: ISOTROPY: Perfect Black Body in all directions !

HOMOGENEITY: less structure at large redshifts !

ENERGY MOMENTUM TENSOR

Perfect fluid approximation

$$T^{\mu}_{\nu} = (\rho + p)u^{\mu}u_{\nu} - p\delta^{\mu}_{\nu}$$

where ρ and p are the fluid density and pressure, while u is the fluid 4-velocity. So in the rest-frame of the fluid, where $u = (1, \vec{0})$, i.e. assuming that the fluid is at rest in the Universe, we have

$$T^{\mu}_{
u} = \left(egin{array}{ccccc}
ho & 0 & 0 & 0 \ 0 & -p & 0 & 0 \ 0 & 0 & -p & 0 \ 0 & 0 & 0 & -p \end{array}
ight)$$

Moreover the energy-momentum tensor is covariantly conserved:

$$\mathcal{D}_{\mu}T^{\mu\nu} = 0 \quad \rightarrow \quad \dot{\rho} + 3H(\rho + p) = 0$$
 continuity equation

This can be solved if we know the equation of state p(
ho)=w
ho then

$$\frac{\dot{\rho}}{\rho} = -3(1+w)H \quad \Rightarrow \quad \rho \propto a^{-3(1+w)}$$

So the different energy types are modeled by perfect fluids with equation of state $w_i=p_i/
ho_i$.

FRIEDMANN EQUATION:

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G_{N}}{3}\rho + \Lambda - \frac{\kappa}{a^{2}}$$

 The energy density & curvature decree the time evolution of the scale factor
 Key parameter is the critical density:
 ρ_c = 3H²/(8πG_N) Ω_i = ρ_i/ρ_c

 Ω_i : density in ~ 10⁴ eV/cm³ ~ 10 protons/m3

DIFFERENT ENERGY TYPES

Depending on the pressure and the equation of state, the energy densities give different expansion rates:

Always decelerating apart for the cosmological constant !

Different epochs of the Universe history

IMPORTANT EPOCHS

Today: $T = 2.7K \sim 10^{-4} \text{ eV}$ z = 0 $T \sim 10^{-3}$ $z \sim 15 - 20$ Gerst stars: T = 0.4 eV z = 1100Photon decoupling: CMB \bigcirc Matter and Radiation equality: T = 1 eV $z \sim 1300$ T = 0.1 MeVSolution Nucleosynthesis: $T \sim 1 \text{ MeV}$ \bigcirc Neutrino decoupling: C ν B • QCD phase transition $T \sim 0.3 \text{ GeV}$ • EW phase transition $T \sim 100 \text{ GeV}$ ◎ ????

STANDARD CANDLES AND RULERS

How can we measure the expansion of the Universe ?

Standard Candle

Measuring Distances with Standard Light Bulbs

An Object becomes fainter by the square of its distance

Standard Ruler

LUMINOSITY DISTANCE

 $D_L^2 = rac{L}{4\pi\Phi}$ Intrinsic Luminosity Measured Flux

For a FRW universe it is given simply by

$$D_L^2 = (1+z) \int_0^z \frac{dz}{H(z)}$$

where $H^2(z) = H_0^2 \sum_i \Omega_{i,0} (1+z)^{3(1+w_i)}$

determination of the cosmological parameters $\Omega_{DM}(w=0), \Omega_{\Lambda}(w=-1), ...$

SN-IA AS STANDARD CANDLES

Type Ia supernova is the explosion of a white dwarf star in a binary star system. Material from a companion red giant star is dumped on the white dwarf until the smaller star reaches a precise mass limit.

The spectra can be corrected to lie on the same line and follow a relation between peak luminosity and width of the light curve...

SUPERNOVAE IA AS STANDARD CANDLES

> Measure the apparent magnitude as a function of the redshift z and test the first correction to the Hubble flow

• The Universe is accelerating ! $\Lambda > 0$

SN-IA AS STANDARD CANDLES

ANGULAR DISTANCE

Standard Ruler $D_A = \frac{R}{d}$ Distance to the Ruler For a FRW universe it is given simply by $D_A = (1+z)R\left(\int_0^z \frac{dz}{H(z)}\right)^{-1}$ where $H(z) \sim H_0 \Omega_{D,0}^{1/2} (1+z)^{3/2(1+w_D)}$ for a dominant component e.g. for the sound horizon at decoupling for MD $\frac{D_{A,CMB}}{(1+z_{CMB})} \sim \frac{2}{H_0 \Omega_{M,0}^{1/2}}$

CMB ANISOTROPIES

Physics of the fluctuations on the homogeneous background !

 $\langle T(\theta)T(0)\rangle = \sum a_{\ell m} Y_m^{\ell}(\theta)$ ℓ,m

THE SOUND HORIZON IN THE BARYON-PHOTON PLASMA AS STANDARD RULER

Measure the angle corresponding to the first peak in the CMB anisotropies
 The Universe

 $\Omega_{tot} = 1.014 \pm 0.017$

 $\Rightarrow \kappa \simeq 0$

is FLAT

Sound Horizon

PLANCK TT SPECTRUM

Perfect agreement with 6-parameter ΛCDM model!

CMB PRIMER

[Wayne Hu's CMB primer at http://background.uchicago.edu/~whu/]

Baryons increase the mass in the plasma and the drag force...

PLANCK COSMO PARAMETERS

[Planck coll. 1807.06209]

Discrepancy in the H_0 measurement depending on Ω_m .

THE SOUND HORIZON IN THE BARYON-PHOTON PLASMA AS STANDARD RULER Sound Horizon

- The same scale is visible in the (baryonic) matter distribution (BAO)
- The more baryons (less CDM), the stronger the signal !

THE SOUND HORIZON IN THE BARYON-PHOTON PLASMA AS STANDARD RULER

 The signal has been now detected in the galaxy power spectrum (two-point correlation !) with high precision.

All measurement are consistent !

BAO: AN ARTISTIC VIEW

Baryon Acoustic Oscillations from SDSS-III Illustration Credit: Zosia Rostomian (<u>LBNL</u>), <u>SDSS-III</u>, <u>BOSS</u>

LECTURE 3: OUTLINE

Basics of thermodynamics

© WIMP mechanism

How to detect a WIMP

BASICS OF THERMODYNAMICS

BASIC FORMULAS

Relativistic particles with p >> m

Non-relativistic particles with m >> p

$$\rho = m n$$

$$n = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-\frac{m-\mu}{T}}$$

Maxwell Boltzmann same for B and F !

BASIC FORMULAS II

Entropy density for relativistic species:

$$s = \frac{\rho + p}{T} = \frac{4\rho}{3T} = \frac{2\pi^2}{45} g_S T^3$$
$$g_S = \sum_B g_B \left(\frac{T_B}{T}\right)^3 + \sum_F g_F \frac{7}{8} \left(\frac{T_F}{T}\right)^3$$

Non-relativistic particles:

$$s = \frac{mn}{T} = g m \left(\frac{m}{2\pi T}\right)^{3/2} e^{-\frac{m-\mu}{T}} \sim 0$$

The entropy is stored practically into radiation !

DEGREES OF FREEDOM

DARK MATTER PRODUCTION MECHANISM

NEUTRINO AS (PROTOTYPE) DM

 Massive neutrino is one of the first candidates for DM discussed; for thermal SM neutrinos:

$$\Omega_{\nu}h^2 \sim \frac{\sum_i m_{\nu_i}}{93 \text{ eV}}$$

but $m_{\nu} \leq 2 \text{ eV}$ (Tritium β decay) so $\Omega_{\nu}h^2 < 0.07$

Unfortunately the small mass also means that neutrinos are HOT DM... Their free-streaming is non negligible and the LSS data actually constrain

NEED to go beyond the Standard Model !

ZELDOVICH-LEE-WEINBERG BOUND

Two possibilities for obtaining the "right" value of $\Omega_{\nu}h^2$: decoupling as relativistic species or as non-relativistic ! In-between the density is too large ! $m_{\nu} > 4(12) \text{GeV}$

for Dirac (Majorana)

THE WIMP MECHANISM

Primordial abundance of stable massive species

[see e.g. Kolb & Turner '90]

The number density of a stable particle X in an expanding Universe is given by the Bolzmann equation

$$rac{dn_X}{dt} + 3Hn_X = \langle \sigma(X + X
ightarrow ext{anything}) v
angle \left(n_{eq}^2 - n_X^2
ight)$$

Hubble expansion Collision integral

The particles stay in thermal equilibrium until the interactions are fast enough, then they freeze-out at $x_f = m_X/T_f$ defined by $n_{eq} \langle \sigma_A v \rangle_{x_f} = H(x_f)$ and that gives $\Omega_X = m_X n_X(t_{now}) \propto \frac{1}{\langle \sigma_A v \rangle_{x_f}}$ Abundance \Leftrightarrow Particle properties For $m_X \simeq 100$ GeV a WEAK cross-section is needed !

Weakly Interacting Massive Particle

For weaker interactions need lighter masses HOT DM !

BOLTZMANN EQUATION [Gondolo & Gelmini 91] $\frac{dY}{dx} = -\frac{2\pi g_S}{15} \left(\frac{10}{q_o}\right)^{1/2} \frac{M_P}{m} \langle \sigma v \rangle_x \left(Y^2 - Y_{eq}^2\right)$ where Y = n/s, x = m/T, g_rho denote the number of degrees of freedom for entropy and energy density and $\langle \sigma v \rangle_x = \frac{1}{4x^4 K_2^2(x)} \int_{2x}^{\infty} dz z^2 \tilde{\sigma} \left(\frac{x}{z}\right) K_1(z)$ where we defined $\tilde{\sigma}\left(rac{m}{\sqrt{s}}
ight) = (s - 4m^2)\sigma(m, s) = s\beta^2\sigma(\beta)$ K_i (x) are modified Bessel functions coming and

from Maxwell-Boltzmann statistics

THE WIMP MECHANISM II

Approximate solution of the Boltzmann equation

Rewrite the equation in terms of $Y = \frac{n}{s}$ and $\frac{d}{dt} = Hx\frac{d}{dx}$ for $x = \frac{m_X}{T}$:

$$rac{dY_X}{dx} = -rac{s\langle \sigma(X+X
ightarrow ext{anything})v
angle}{xH} \left(Y_X^2 - Y_{eq}^2
ight)$$

Until x_f we have $Y_X = Y_{eq}$, after that we can neglect Y_{eq} that decreases exponentially and then

$$\frac{dY_X}{Y_X^2} = -\frac{s(x)\langle \sigma(X + X \to \text{anything})v\rangle(x)}{xH(x)}dx$$

which has the solution

$$Y_X(x) = \frac{Y_X(x_f)}{1 + Y_X(x_f) \frac{s(m_X)}{H(m_X)} \int_{x_f}^x \frac{dx}{x^2} \langle \sigma(X + X \to \text{anything}) v \rangle(x)}$$

so when σ is sufficiently large after freeze-out

$$Y_X(x) \simeq rac{1}{rac{s(m_X)}{H(m_X)} \int_{x_f}^x rac{dx}{x^2} \langle \sigma(X + X o ext{anything}) v
angle(x)}$$

very weakly dependent on x_f ; otherwise $Y_X(x) = Y_X(x_f)$.

HOW TO DETECT A WIMP

THE WIMP CONNECTION

Colliders: LHC/ILC

Indirect Detection: DM e, q, W, Z, γ DM e, q, W, Z, γ

3 different ways to check this hypothesis !!!

THE HOPE: DETECT DM !

• The flux in a species i is given by $\Phi(\theta, E) = \sigma v \frac{dN_i}{dE} \frac{1}{4\pi m_{DM}^2} \int_{l.o.s.} ds \ \rho^2(r(s, \theta))$

Strongly dependent on the halo model/density via J and the DM clumping: BOOST factor !

Particle Physics Halo property $J(\theta)$

- Spectrum in gamma-rays determined by particle physics ! Smoking gun: gamma line...
- For other species also the propagation plays a role.

THE HOPE: DETECT DM !

DECAYING DM

• The flux from DM decay in a species i is given by $\Phi(\theta, E) = \frac{1}{\tau_{DM}} \frac{dN_i}{dE} \frac{1}{4\pi m_{DM}} \int_{l.o.s.} ds \ \rho(r(s, \theta))$ Particle Physics Halo property $J(\theta)$ • Very weak dependence on the Halo profile; what

matters is the DM lifetime...

- Galactic & extragalactic signals are comparable...
- Spectrum in gamma-rays given by the decay channel!
 Smoking gun: gamma line...

EM SPECTRUM FROM DM

Dark Matter annihilation (or decay) can give photons not only directly from the annihilation, but also by many secondary processes, especially if stable charged particles are produced: Synchrotron emission, Inverse Compton scattering

DM SPECTRAL FEATURES

Depending on the model, different features could appear and stick out from the continuum spectrum, helping to see the signal and disentangle the model ! Smoking guns !

GALACTIC CENTRE EXCESS

An excess has been found since some years in the FERMI-lat data by Hooper & al. in the direction of the Galactic centre:

[Daylan & al 1402.6703]

Compatible with a thermal relic annihilating into $~b~b, au^+ ~ au^-$

BOUNDS ON WIMP DM

Strong limits are obtained from dwarf satellite galaxies, considering measured J-factors:

BOUNDS ON WIMP DM Strong limits are obtained from dwarf satellite galaxies, considering measured J-factors: Fermi-LAT & DES 1611.03184] 10^{-23} b bAckermann et al. (2015) Nominal sample Median Expected 10^{-24} 68% Containment [Di Mauro & Winkler 2101.11027] 95% Containment $\left({{{{{{{{{{{}}}}}}}_{{{}^{-25}}}}}_{{{}^{-25}}}} {{10}^{-25}} \right)$ 10-23 GCE, Syst. DM density GCE, Syst. IEMs dSphs ULs, 68% CL 10^{-24} dSphs ULs, 95% CL dSphs ULs, 99% CL (σv) [cm³/s] 10^{-27} 10^{2} 10¹ DM Mass (GeV) 10-26 bb 10-27 10² 10³ 104 10^{1} MDM [GeV]

GALACTIC PARTICLE'S RANGES

ANTIMATTER IN CR: ANTIPROTONS

Latest data from AMS-02 for antiprotons: is there an excess ???

PLANCK: DM ANNIHILATION

WIMP annihilation also modifies the epoch of recombination due to the release of energy in the primordial plasma and leaves imprints into the CMB ! Planck can now exclude cross-sections as those needed by PAMELA and AMS-02:

[Planck 1807.06209]

but not the models explaining the Galactic centre excess...

3 different ways to check this hypothesis !!!

DIRECT WIMP DETECTION

© Elastic scattering of a WIMP on nuclei. The recoil energy is in the keV range:

with $\Delta E = \frac{4m_{DM}m_N}{(m_{DM} + m_N)^2} E_{kin}^{DM}$ $E_{kin}^{DM} \sim \frac{1}{2} m_{DM} v^2 \sim 50 \text{ keV} \frac{m_{DM}}{100 \text{GeV}}$ Need very low threshold ! • The rate is $\frac{dR}{dE_R} \propto \sigma_n F^2(E_R) \frac{\rho_{DM}}{m_{DM}} \int_{v_{min}}^{\infty} \frac{dv}{v} f(v)$

Particle Physics Halo physics Galactic center lune 30 km/sec 30 km/sec Dec. Sun 230 km/sec

Rate depends on v in lab frame → annual modulation !

DIRECT WIMP DETECTION

How large are the cross-sections that we expect from thermal consideration or the exchange of (known) EW particles ?

• Thermal relic cross-section to give $\Omega_{DM}h^2 \sim 0.1$ $\langle \sigma v \rangle \sim 3 \times 10^{-26} cm^3/s \longrightarrow \sigma \sim 10^{-36} cm^2 = 1 \text{ pb}$ • Exchange of Z boson:

 $\sigma \sim \lambda_{Z\chi}^2 G_F^2 m_p^2 \sim 10^{-38} \lambda_{Z\chi}^2 cm^2 = 10^{-2} \lambda_{Z\chi}^2 \text{ pb}$

© Exchange of Higgs boson:

 $\sigma_p \sim \lambda_{h\chi}^2 m_p^2 / m_h^4 \sim 10^{-44} \lambda_{h\chi}^2 cm^2 = 10^{-8} \lambda_{h\chi}^2 \text{ pb}$
DIRECT DETECTION OF DM

A large part of parameter space already excluded by searches: Z-type cross-section is out, now we are exploring Higgs-type

HIGGS PORTAL DM

If the DM interacts with Higgs via portal interaction, it is already under siege by DD & LHC:

NOW STRONGER BOUNDS

The XENON1T experiment latest results:

[arXiv: 1805.12562]

FUTURE OF DM DD

Neutrino background limits how far one can go. But there are already ideas on ways to suppress this background...

DM SIGNAL IN NEUTRINOS

DM can accumulate and annihilate in the sun, if it interacts sufficiently strongly with protons; the only particles that can escape the sun environment are neutrinos: Limits from neutrino detectors

THE WIMP CONNECTION

Early Universe: $\Omega_{CDM}h^2$ DM any $\langle \sigma v \rangle \sim 1 \text{ pb}$

Colliders: LHC/ILC

e, q

e, q

Direct Detection: DM DM Q

Indirect Detection:

e, q,W,Z, γ e, q,W,Z, γ

3 different ways to check this hypothesis !!!

DM

MISSING ENERGY SIGNATURE

The direct production of two DM particles in a collider gives unfortunately no signal !
The energy just disappears...

DM

Dark Matter:

Missing energy

 How is it possible to tag such events: Thanks to Initial State Radiation !
i.e. either a single photon or gluon emitted by the initial parton, recoiling against the DM particle(s)

Trouble: need sufficient rate of DM production... signature

EFT FOR DARK MATTER

[Beltram et al 2000, Goodman et al 2000 & 2001, Bai et al 2001,....] Consider the production of a pair of DM particles together with ISR of a SM particle: gluon, photon, W/Z, top, etc... EFT: Many different effective operators are possible !

CAVEAT FOR THE EFT: S

While the use of EFT for the case of non-relativistic scattering with matter in DM direct detection is well-justified, at LHC energies one has to be more careful...

[Fox et al 11, Busoni et al 13, O.Buchmuller et al 13, ...]

The bound is valid only for large mediator mass !

LHC: SIMPLIFIED MODELS

[CMS collaboration, EPJC 75 (2015) 235]

LHC: SIMPLIFIED MODELS II

[CMS, EXO-16-039-pas]

Very strong bounds for the axial vector case, which gives spin dependent scattering !

LHC: SIMPLIFIED MODELS III

[ATLAS 2102.10874 hep-ex]

Very strong bounds for the axial vector case !

SUSY MODELS STILL ALIVE

[Barr & Liu 2016]

pMSSM points surviving after LHC-13 data

Higgsino band Wino band

Wino DM challenged by Indirect Detection, but Higgsino parameter space still viable (and also some Bino-like...)

Well-tempered Neutralino

Relic density strongly dependent on neutralino nature !!!

MSSM-7 DARK MATTER

With more parameters, more mechanism are possible, i.e. in the MSSM with 7 parameters: both Bino & Higgsino DM !

