

Simulation update

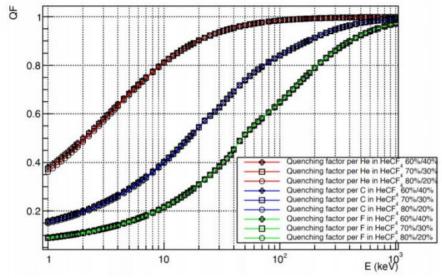
Giulia D'Imperio for the simulation working group

CYGNO general meeting 15/10/20

Simulation activities and people

Development of simulation/analysis software

- 1. SRIM → André and Flaminia with Davide coordination
- 2. Toy MC → Atul and Mariana with Fabrizio and Giulia coordination
- 3. Analysis → Samuele and Atul with Emanuele coordination

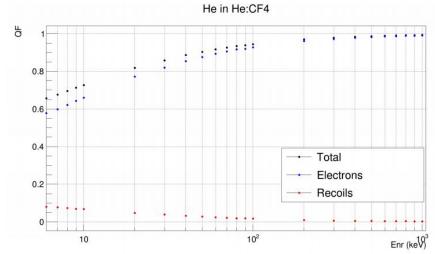

Physics cases

- 4. Neutrons in LIME → Flaminia with Elisabetta coordination
- 5. Neutrinos in CYGNO → Samuele and Giorgio with Elisabetta coordination
- 6. Dark matter in CYGNO → Giorgio with Elisabetta coordination
- 7. Migdal effect in CYGNO → Stefano with Andrea coordination

Updates from last simulation meeting Quenching Factor assessment

•Simplified approach to QF analysis already performed for H, He, C, F for different energies (from 1 keV up to 1 MeV); Calculation method [[Setup Window) In this approach we used the "quick calculation" of SRIM; Type of TRIM Calculation Ellon Distribution and Quick Calculation of Damage TRIM Demo NO Graphics (Fastest Calc., or running TRIM in background) Restore Last TRIM Data Parameters used: ION DATA Incident particle TARGET DATA Gas density: 0.00156 g/cm3; Input Elements to Layer **Target Layers** Atomic percent (He-23.1%, C-15.4% and F-61.5%); Add New Layer Target width (depends on the energy and was conceived to optimize Number [amu] Stoich or % Disp Latt X He-CF4 1 mm v 0,001! 0,958! V the bin to particle range); · 2 4,003 3076 23,0 5 1 2 · 6 12,01 5384 15,3 28 3 7,4 Layer definition Number of ions simulated: 1000 per run; · 9 18,99 1538 61,5 25 3 2 Layer composition Data to be stored Special Parameters **Output Disk Files** Resume saved SRIM-2008 Clear All Number of events 100 Plotting Window Depth Calculate Quick Range Table 10000000 ? Random Number Seed Special "EXYZ File" Increment (eV) Main Menu Problem Solving

Preliminary QF results


He QF = 0.8 for 10 keV

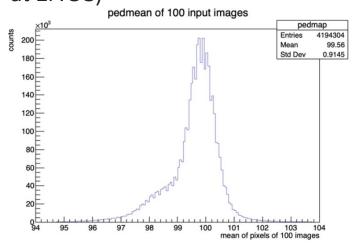
C QF = 0.4

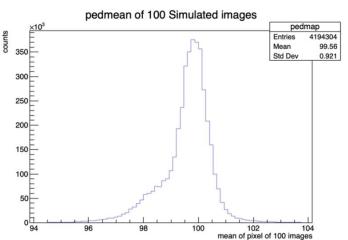
FQF = 0.2

(Previous calculation by

E. Marconato)

He QF = 0.73 for 10 keV


C QF = 0.46


FQF = 0.37

(New calculations)

Noise simulation of CMOS

- Using method developed by Rafael and brazilian group
- Atul managed to run on his laptop, plan to move on LNGS cluster
 - → software setup almost done thanks to Emanuele and Stefano Stalio (calcolo at LNGS)

Solar neutrinos in CYGNO

Expected rate

Total cross section calculated with quantum field theory

Differential cross section integrated form threshold to maximum electron energy

$$\begin{split} \sigma_{\nu_e}(E_{\nu}) &= \frac{G_F^2 m_e}{2\pi} \left\{ (g_V + g_A + 2)^2 \left[\frac{2E_{\nu}^2}{(m_e + 2E_{\nu})} - T_{e,Thr}' \right] + \right. \\ &\left. - (g_V - g_A)^2 \frac{E_{\nu}}{3} \left[\left(1 - \frac{2E_{\nu}}{m_e + 2E_{\nu}} \right)^3 - \left(1 - \frac{T_{e,Thr}'}{E_{\nu}} \right)^3 \right] + \\ &\left. - (g_V - g_A)(g_V + g_A + 2) \frac{m_e}{2} \left[\frac{4E_{\nu}^2}{(m_e + 2E_{\nu})^2} - \frac{T_{e,Thr}'^2}{E_{\nu}^2} \right] \right\} \end{split}$$

- Expected rate calculated on 60:40 He/CF₄ gas mixture @ latm 25°C
- Oscillation taken into account

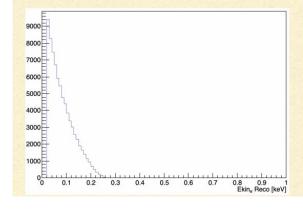
$$P(\nu_e o
u_\mu) = P_{e\mu} = rac{1}{2} \sin^2(2\theta_{12}) \quad P(\nu_e o
u_e) = P_{ee} = 1 - rac{1}{2} \sin^2(2\theta_{12})$$

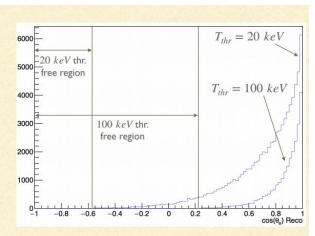
Threshold on e E set at 20 keV

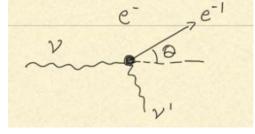
pp flux tabulated taken from Bahcall

Resulted rate:

$$R = N_e \sum_{i \neq -} \varphi(E_i) (P_{ee} \sigma_{\nu_e}(E_{\nu,i}) + P_{e\mu} \sigma_{\nu_{\mu}}(E_{\nu,i}))) \Delta E$$

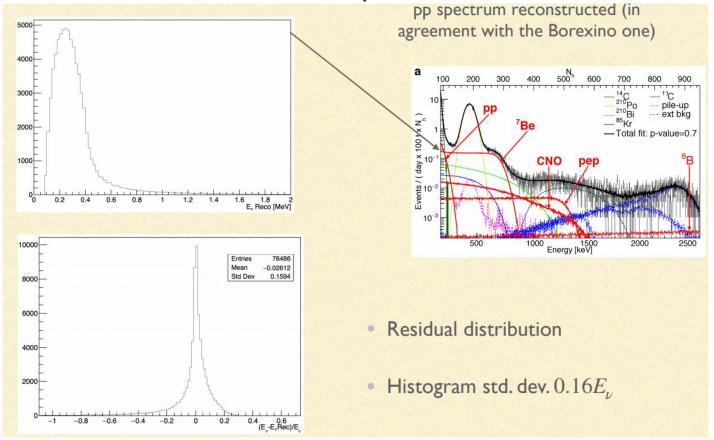

$$R = 2.9 \cdot 10^{-8} \frac{events}{s \cdot m^3} = 0.9 \frac{events}{y \cdot m^3}$$

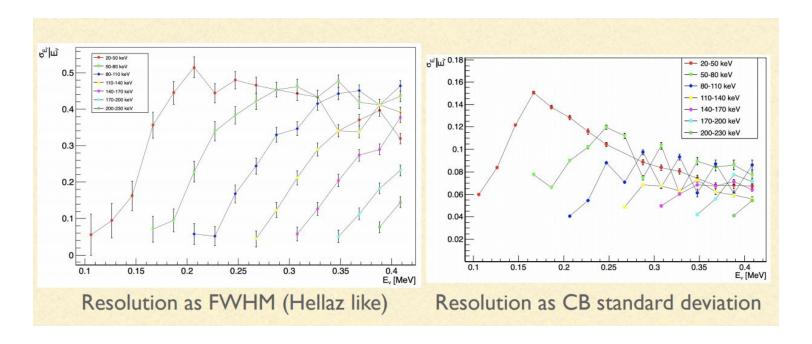

Not so bad for a $1000 m^3$ detector


Simulated electrons spectrum

Results

- $cos(\theta)$ distribution for two different threshold: $20 100 \ keV$
- Signal free regions available for background measurements
- With higher threshold better signal but $R \sim 0.3 ev/(m^3 y)$

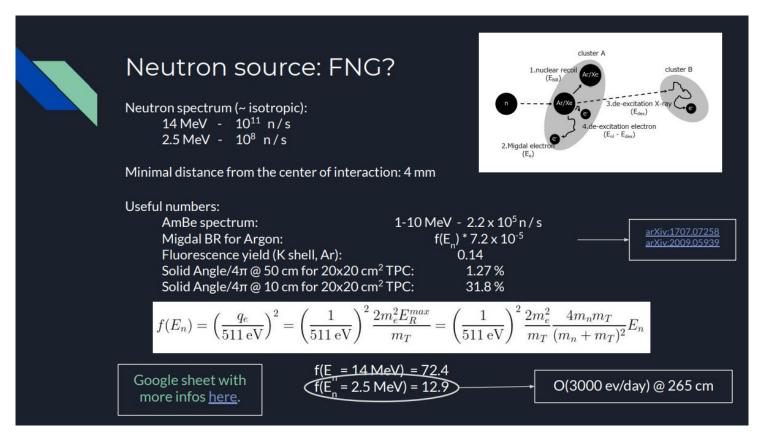



- Electron energy spectrum reconstructed
- Typical falling exponential signal

"Reconstructed" neutrino spectrum

S. Torelli, E. Baracchini

Neutrino energy resolution



- To be compared to similar calculations for other TPC detectors
- This is still all-analytic calculation, need to add detector effects (diffusion, noise, etc)

Migdal effect feasibility study

- More details in Andrea's presentation
 - https://agenda.infn.it/event/24078/contributions/122382/attachments/75775/ 97181/cvgnoMC-2020.09.28.pdf
- Interesting for low mass dark matter search (< GeV)
- Signature is a NR with an ER @3 keV separated by O(cm)
- Investigate use of Ar:CF4 in one of our prototypes
- Neutron source to characterize detector
 - Am-Be source
 - neutron/ion beams
- Plan to start from a simple simulation of neutrons + electrons in LIME
 - compare with expected background
 - o estimate source rate needed to characterize the detector for this measurement
 - study analysis performance on MC

Migdal effect in CYGNO

11