DEEP LEARNING FOR T ID: SUMMARY OF RESULTS AND ONGOING WORK

- analysis of ideal configuration (test-beam prototipe geometry module): DONE
 - almost perfect identification of different tau decays using state of the art ConvNet
- ongoing step: move to IDEA detector with realistic conditions
 - several MC samples produced (LorenzoP): Z→TT (principal decay modes) and Z→qq events with full sim in two scenarios:
 - no magnetic field and no material before the dual readout calorimeter
 - magnetic field and material
 - ongoing design and training of different ANN architectures (results will be ready soon):
 - conventional CNN
 - graph-NN and point-cloud networks
 - two initial tasks:
 - discrimination tau jets
 - tau decay identification
- Currently involved:
 - senior physicist + one full time master student in computer science (already started by a couple of months) + two new master students (1 physics + 1 CS) will join before the end of the year: offline studies + fast simulation based on generative-DL
 - senior physicist + 3 PhD students (part-time): study of real-time implementation of the different models