Constraints on light vector mediators through COHERENT data

Speaker: Emmanuele Picciau

19th February 2021

Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT

M. Cadeddu,^{*a,b*} and N. Cargioli,^{*b*} F. Dordei,^{*a*} C. Giunti,^{*c*} Y.F. Li,^{*d,e*} E. Picciau,^{*a,b*} and Y.Y. Zhang^{*d,e*}

^aIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy

^bDipartimento di Fisica, Università degli Studi di Cagliari, and INFN, Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy ^cIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I–10125 Torino, Italy

- ^dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- ^eSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Reference DOI: 10.1007/JHEP01(2021)116

Based on a work in collaboration with

M. Cadeddu N. Cargioli F. Dordei C. Giunti Y. F. Li Y. Y. Zhang

Istituto Nazionale di Fisica Nucleare

Coherent Elastic Neutrino Nucleus Scattering

Standard Model cross section for CEvNS

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}(E,T_{\rm nr}) = \frac{G_{\rm F}^2 M}{\pi} \left(1 - \frac{MT_{\rm nr}}{2E^2}\right) \left[g_V^p Z F_Z(|\vec{q}|^2) + g_V^n N F_N(|\vec{q}|^2)\right]^2$$

19th February 2021

How to compare model with COHERENT data

The expected CEvNS signal is given by:

See also Y. Zhang parallel talk

19th February 2021 XIX International Workshop on Neutrino Telescope

Non Standard Interactions

The general vector neutral-current neutrino non standard interactions described by the effective four-fermion Lagrangian is:

$$\mathcal{L}_{\mathrm{NSI}}^{\mathrm{NC}} = -2\sqrt{2}G_{\mathrm{F}} \sum_{\alpha,\beta=e,\mu,\tau} (\overline{\nu_{\alpha L}}\gamma^{\rho}\nu_{\beta L}) \sum_{f=u,d} \varepsilon_{\alpha\beta}^{fV}(\overline{f}\gamma_{\rho}f) \qquad \begin{array}{l} \text{SM electroweak vector contribution} \\ Q_{\alpha}^{2} = \left[g_{V}^{p}ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right]^{2} \\ \hline \\ \text{General NSI electroweak vector contribution} \\ Q_{\alpha}^{2} = \left[\left(g_{V}^{p} + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV}\right)ZF_{Z}(|\vec{q}|^{2}) + \left(g_{V}^{n} + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV}\right)NF_{N}(|\vec{q}|^{2})\right]^{2} \\ + \sum_{\beta\neq\alpha} \left|\left(2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV}\right)ZF_{Z}(|\vec{q}|^{2}) + \left(\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV}\right)NF_{N}(|\vec{q}|^{2})\right|^{2}, \\ C. \text{ Giunti - Phys.Rev.D 101 (2020) 3, 035039} \end{array}\right]$$

Assuming that neutrinos don't change flavor and only electron and muon neutrinos are involved in the process (as the case of COHERENT experiment):

$$\mathcal{L}_{\mathrm{NSI}}^{\mathrm{NC}} = -2\sqrt{2}G_F \sum_{\ell=e,\mu} (\overline{\nu_{\ell L}}\gamma^{\rho}\nu_{\ell L}) \sum_{f=u,d} \varepsilon_{\ell\ell}^{fV}(\bar{f}\gamma_{\rho}f)$$

19th February 2021

No flavor changing NSI electroweak vector contribution

$$Q_{\ell}^{2} = \left[(g_{V}^{p}(\nu_{\ell}) + 2\varepsilon_{\ell\ell}^{uV} + \varepsilon_{\ell\ell}^{dV}) ZF_{Z}(|\vec{q}|^{2}) + (g_{V}^{n} + \varepsilon_{\ell\ell}^{uV} + 2\varepsilon_{\ell\ell}^{dV}) NF_{N}(|\vec{q}|^{2}) \right]$$

*In principle we should also consider an axial contribution but in experiments looking for coherent scattering the axial contribution is negligible

Interactions mediated by non standard bosons

What if neutrino NSI are induced by a gauge Z'-boson with mass $M_{Z'}$ and coupling $g_{Z'}$ associated with a new U(1)' symmetry?

Depending on how the **new light vector mediator** couples to the SM, so assuming a value for Q_{ℓ} and Q_{f} it is possible to explore several models, for instance:

$$\begin{aligned} & \text{Universal model} \qquad \text{J. Liao and D. Marfatia- Phys.Lett.B 775 (2017)} \\ & \left(\frac{d\sigma}{dT_{nr}}\right)_{univ}^{\nu_{\ell}-\mathcal{N}}(E, T_{nr}) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT_{nr}}{2E^2}\right) \cdot \left[\mathcal{Q}_{\ell, \text{SM}} + \frac{3(g_{Z'})^2}{\sqrt{2}G_F} \frac{ZF_Z(|\vec{q}|^2) + NF_N(|\vec{q}|^2)}{|\vec{q}|^2 + M_{Z'}^2}\right]^2 \\ & \text{B-L model} \qquad \text{T. Han, J. Liao, H. Liu and D. Marfatia - JHEP 11 (2019) 028} \\ & \text{J. Billard, J. Johnston and B.J. Kavanagh - JCAP 11 (2018) 016} \\ & \left(\frac{d\sigma}{dT_{nr}}\right)_{B-L}^{\nu_{\ell}-\mathcal{N}}(E, T_{nr}) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT_{nr}}{2E^2}\right) \cdot \left[\mathcal{Q}_{\ell, \text{SM}} - \frac{(g_{Z'})^2}{\sqrt{2}G_F} \frac{ZF_Z(|\vec{q}|^2) + NF_N(|\vec{q}|^2)}{|\vec{q}|^2 + M_{Z'}^2}\right]^2 \\ & \text{L}_{\mu}\text{-L}_{\tau} \text{ model} \qquad \text{W. Altmannshofer et al. - Phys. Rev. D 100 (2019) 115029} \\ & \left(\frac{d\sigma}{dT_{nr}}\right)_{L_{\mu}-L_{\tau}}^{\nu_{\ell}-\mathcal{N}}(E, T_{nr}) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT_{nr}}{2E^2}\right) \cdot \\ & \left\{\left[g_V^p(\nu_{\ell}) - \frac{\alpha_{\text{EM}} (g_{Z'})^2}{3\sqrt{2}\pi G_F} \log\left(\frac{m_{\tau}^2}{m_{\mu}^2}\right) \frac{1}{|\vec{q}|^2 + M_{Z'}^2}\right] ZF_Z(|\vec{q}|^2) + g_V^n NF_N(|\vec{q}|^2)\right\}^2 \end{aligned} \right\}^2 \end{aligned}$$

XIX International Workshop on Neutrino Telescope

19th February 2021

Interactions mediated by non standard bosons

19th February 2021

Constraints on the 3 models using COHERENT data

19th February 2021

Thanks for the attention

19th February 2021 XIX International Workshop on Neutrino Telescope