

Recent results and prospects for Astroparticle and BSM Physics with MicroBooNE

Pawel Guzowski The University of Manchester On behalf of the MicroBooNE Collaboration NeuTel 2021 – 23 Feb 2021

MANCHESTER 1824

The University of Manchester

Introduction

Mark Ross-Lonergan Marina Reggiani Guzzo – Fri cross-section flash research and development – Tue sterile parallel – *Tue sterile parallel* Wengiang Gu – Fri cross-section flash 💬 Maya Wospakrik – Fri sterile flash Krishan Mistry - Fri cross-section parallel - Wed detector parallel

Diverse variety of other topics in astroparticle and exotic physics, that MicroBooNE is capable of (this talk)

Hanvu Wei

Andrew Mogan

 (\cdots)

 \bigcirc

....

Liquid argon time projection chamber capabilities

For more details on the detector principles: please see talks by Krishan Mistry and Maya Wospakrik

Excellent spatial and charge resolution allows for unprecedented PID, and interesting *new physics searches via anomalous final state topologies*

Pawel Guzowski - NeuTel 2021

Astroparticle and exotic physics with MicroBooNE

• <u>Results released in 2020</u>

- Informing and developing for future experiments
 - Supernova neutrino R&D
 - Cosmic rate measurement
 - Baryon number violation

> Pushing reconstruction capabilities

- MeV-scale physics

µBooN2

MANCHESTER 1824

- > Searches for new physics
 - Heavy neutral leptons
 - 'Higgs Portal' dark scalars
- Some prospects for future results

Journal of Ins The contin projection	strumentation Super- nuous readout stream of the MicroBooNE liquid argon time a chamber for detection of supernova burst neutrinos			Person of standard to JINST Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC	
View the <u>uris</u>	Progress Toward the First Search for Bound Neutron Oscillation into Antineutron in a Liquid Argon TPC MICROBOONE-NOTE-1093-PUB The MicroBooNE Collaboration August 3, 2020	[physics.ins-det] 22 Dec 2020		P. Abratenko ¹⁷ B. Akrashed ¹⁷ B. An ¹⁷ J. Anthony ¹⁷ J. Astad ¹⁷ A. Abbenad ¹⁷ S. Balasubramanian ¹¹¹⁰ B. Bailer ¹ C. Barnes ¹ G. Barr ¹ V. Basque ¹ M. Bass L. Bathe-Peters ¹¹¹ <i>MeV-scale Physics in MicroBooNE</i> <i>MICROBOONE-NOTE 1076-PUB</i> <i>The MicroBooNE Collaboration</i> Abstract: The scope of this public note is to present preliminary measurements of MeV et agnatures and relevant backgrounds for boam mentrino interactions using a dedicated reconstruction	sergy
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		The H boson (5 will de S will de S will de S will de Model fe the range S will de S wi	<section-header><section-header><text><text><text><section-header><equation-block><equation-block><equation-block><text><text></text></text></equation-block></equation-block></equation-block></section-header></text></text></text></section-header></section-header>	

R&D for supernova neutrino detection

- A lot of data is produced by MicroBooNE – <u>33 GB/s</u>
 - Orders of magnitude more expected in DUNE
- To observe supernova neutrino burst, would need continuous readout
- Pioneered a system to zero-suppress and compress the TPC data
 - Reduction of rates by over $80 \times$
 - Prototype for DUNE
- Performance evaluated by reconstruction of Michel electrons

 Comparable to full datastream

JINST 16, 02, P02008 (2021)

5

µBooN2

MANCHESTER

Cosmic ray rates

- Used our data to measure rate of cosmic rays on surface at Fermilab
 - First such measurement with a liquid argon TPC
- Allows tuning the cosmic simulation
 - Measurement agrees with 'out-of-thebox' CORSIKA simulation
 - Incompatible with 'constant mass composition' extension* of the simulation
- Useful input to simulations of future experiments at Fermilab, including SBN program and DUNE

* Alternative spectral composition of light and heavy ion cosmic rays impacting atmosphere

Neutron-antineutron oscillation

MicroBooNE is pioneering techniques to be used in DUNE

Convolutional neural network based search

MeV-scale reconstruction

- Standard reconstruction algorithms designed for O(100 MeV) interaction
- 'Blips' of ionization produced by low-energy gammas or neutrons
- We are pushing down the thresholds for reconstructing this information

MICROBOONE-NOTE-1076-PUB

MANCHESTER 1824

MeV-scale applications

Supernova neutrino **µBooNE** Marley Simulation CC Supernova ve Event Better energy reconstruction • by including blips • Distinguish CCQE from v-e elastic scattering **Electron Track De-excitation Photons** Energy (True) = 11.37 MeV Energy (True) = 4.38 MeV Energy (Reco)= 10.85 MeV Energy (Reco)= 3.81 MeV 6 cm

Muon-pion separation, allowing e.g. distinguishing BSM di-muon signals from SM muon-pion backgrounds

Searches for millicharged particles (blips along a straight line, pointing back to target)

MANCHESTER

Heavy neutral leptons

- O(100 MeV) mass neutral leptons; mixing with SM neutrinos
- Produced in the same way HNL production as standard neutrinos K^{+} $|U_{\mu\nu}|^{2}$
 - We used kaon decays as the source, for this first search
- Decay via weak interaction
 Muon+pion in our case
- "Late window" trigger developed for this analysis
 - Negligible neutrino backgrounds

MANCHESTER

he University of Manchester

Heavy neutral leptons

- BDT based analysis with 10 HNL mass points (245-388 MeV)
- No excess observed
- Competitive limits, with only small fraction of our dataset
- We will be using more production and decay modes, full trigger window, and NuMI data, in the near future
 - Stay tuned

µBooN2

MANCHESTER

The University of Manchester

Higgs Portal scalars

HOO NP

0011

MINOS,

MINERVA, NOvA

~120[°]

Absorber

- "Portal" to the dark sector, via a dark scalar mixing with the Higgs (mixing angle θ)
 - Couples to SM fermions via Yukawa couplings $\propto \theta^2 m^2$
- Very similar phenomenology as HNLs

~30

Target

Main Injector

120 GeV

Not to Scale

µBooN

MANCHESTER

The University of Manchester

Beam

- Kaons decaying to scalars in beamline
- Scalar decays to fermions in detector
- Our first search uses kaons decaying at rest in the NuMI beam dump

NuMI Beamline Side View

~8[°]

Neutrinos

D_{ecay} Pipe

675 m

Kaons, surviving protons-

Higgs Portal scalars

Off-beam data

Cosmic

🕂 On-beam data

MicroBooNE Preliminary

Run 1, NuMI FHC 0.92×10²⁰ POT

Cryo. v simulation

Dirt v simulation

1.0 / 3000

2500

2000

- Searching for e⁺e⁻ pairs from the decay of a <200 MeV scalar
- Using a BDT-based analysis

µBooN

Angular variable (one of the

Simulation is well modelled

most important for BDT);

Higgs Portal scalars

- We observe 5 events in signal region, with 2.0 ± 0.8 expected
- Can exclude central value model parameters required to explain KOTO anomaly*
- This was with 10% of our NuMI dataset; further search results to come!

*In 2019, KOTO reported anomalous excess of $K^0 \rightarrow \pi^0$ +invisible decays, although significance has decreased in recent reporting

MANCHESTER

The University of Manchester

Dark prospects

- Further BSM models being explored with e⁺e⁻ final states
- Dark neutrino portal, with dark Z' decay
 - could explain MiniBooNE: if e⁺e⁻ resolved as single shower
- Dark matter produced in beamline; inelastic scattering off argon
 - MicroBooNE has excellent sensitivity

MANCHESTER

he University of Manchester

Summary

- MicroBooNE is not only excellent for investigating MiniBooNE or measuring cross sections, but can also perform a diverse variety of astrophysical or exotic measurements
- We have produced some exciting results in the past year
 - Supernova continuous readout (<u>JINST 16, 02,</u> <u>P02008 (2021)</u>)
 - MeV-scale physics (<u>MICROBOONE-NOTE-</u> <u>1076-PUB</u>)
 - Cosmic ray rate measurement (arXiv:2012.14324)
 - Neutron-antineutron oscillation analysis development (<u>MICROBOONE-NOTE-1093-</u> <u>PUB</u>)
 - Searches for heavy neutral leptons (<u>Phys.Rev.D</u> <u>101, 052001 (2020</u>), and dark sector scalars (<u>MICROBOONE-NOTE-1092-PUB</u>)
- We do have a lot more results to come in the near future
 - watch this space!

µBooN

MANCHESTER

The University of Manchester

