The Liquid Scintillator of JUNO

Presented by

Michele Montuschi On behalf of the JUNO collaboration

XIX International Workshop on Neutrino Telescopes 2021, ONLINE (ZOOM) Neutrino Masses and Mixing Parallel Session

February 24th, 2021

Central detector:

- Acrylic sphere with **20 ktons liquid scintillator (LAB+fluors)**
- 17571 large PMTs (20-inch)
- 25600 small PMTs (3-inch)
- 78% PMT coverage

Water Cherenkov muon veto:

- 2400 20-inch PMTs
- 35 ktons ultra-pure water

LS Recipe

• Linear alkyl benzene (LAB) + 2.5 g/L PPO + 3 mg/L bisMSB

LS optical requirements

- Light output: ~10.000 Photons / MeV → ~1200 p.e. / MeV
- Attenuation length: > **20 m @ 430 nm**

LS radio-purity requirements :

- Reactor anti-neutrino physics: ²³⁸U / ²³²Th < 10⁻¹⁵g/g, ⁴⁰K < 10⁻¹⁶g/g
- Solar neutrino physics: ²³⁸U / ²³²Th < 10⁻¹⁷g/g, ⁴⁰K < 10⁻¹⁸g/g, ¹⁴C < 10⁻¹⁸g/g

Technological Challenges

- Constant delivery of purified LS
- Underground laboratory
- Minimize the contamination of LS

Abs

LIQUID SCINTILLATOR PURIFICATION TEST at DAYA BAY

3/6

Absorbance Spectrum

Rn removal with Stripping pilot plant

Abusleme et al. - Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector- NIM A, 988, 164823 (2021)

Purification of LAB in 4 Steps:

- Al₂O₃ filtration column: improvement of optical properties
- **Distillation:** removal of **heavy metals**, improvement of transparency
- Water Extraction: removal of radio isotopes from uranium and thorium chain and furthermore of ⁴⁰K (underground)
- Steam / Nitrogen Stripping: removal of gaseous impurities like ³⁹Ar, ⁸⁵Kr, and ²²²Rn (underground)

OVERGROUND LS PLANTS: MAIN FEATURES AND STATUS

5/6

	Alumina filtration process parameters			Distillation process parameters		
Inlet tank	Height	[m]	2.6	Height	[m]	4
	Height/Diameter		3:1	Height/Diameter		4:2
	N° Columns		8	N° Trays		6
	Pressure	[bar]	>10	Pressure	[mbar]	10
	Scint. Flux	[l/h]	7000	Temperature	[°C]	200
	Bed Volume	[I]	500	Scint. Flux	[l/h]	7000
Outlet tank	Filters	[nm]	220/50	Scint. Reflux	[l/h]	2000
Winch conveyor				Max Gas flow	[kg/h]	50

Status of the alumina filtration plant:

- All tubes were connected
- The cabinets were completed
- 8 pumps were tested
- The columns were tested at a P = 19 bar
- under construction and will be ready for installation later in March

Status of the distillation plant

- Equipment and piping production and cleaning is completed
- All equipment installed inside skids
- Helium leak test finished
- completed and delivered at JUNO site

Lombardi et al. - Distillation and stripping pilot plants for the JUNO neutrino detector: design, operations and reliability - NIM A 925, 6-17 (2019)

UNDERGROUND LS PLANTS: MAIN FEATURES AND STATUS

Water Extraction process parameters							
Height	[m]	13					
Diameter	[m]	1					
N° T-Sta	>=5						
Temp.	[°C]	80					
Scint. Flux	[l/h]	7000					
Nater Flux	[l/h]	2300					
Max Gas flow	[Nm3/h]	50					

Status of the Water Extraction plant :

- Finished production of the columns and its internal parts
- Finished the welding of the four tanks
- Heat exchanger will be manufactured in March
- Under construction and will be ready for installation in July

Steam stripping								
par	parameters							
Height	[m]	6						
Diameter	[m]	0.45						
Unstruct	Unstructured Packing							
Pressure	[mbar]	300						
Temp.	[°C]	90						
Scint. Flux	[l/h]	7000						
Steam Flux	[kg/h]	25						
Gas flow	[kg/h]	60						

Status of the steam stripping plant:

- Equipment and piping production and cleaning is completed
- All equipment installed inside skids
- Helium leak test finished
- completed and delivered at JUNO site

Lombardi et al. - Distillation and stripping pilot plants for the JUNO neutrino detector: design, operations and reliability - NIM A 925, 6-17 (2019)

Thank you.

Contact:

Michele Montuschi

JUNO

Istituto Nazionale di Fisica Nucleare Sez. di Ferrara Via Saragat 1, 44122 Ferrara, ITALY

montuschi@fe.infn.it

Istituto Nazionale di Fisica Nucleare

Thank you

Thank you

BackUp

Istituto Nazionale di Fisica Nucleare

MOTIVATION FOR LIQUID SCINTILLATOR PURIFICATION

Liquid scintillator: 20 kton of Linear Alkyl-Benzene

Purification of LAB in 4 Steps:

- Al₂O₃ filtration column: improvement of optical properties
- **Distillation:** removal of **heavy metals**, improvement of transparency
- Water Extraction: removal of radio isotopes from uranium and thorium chain and furthermore of ⁴⁰K (underground)
- Steam / Nitrogen Stripping: removal of gaseous impurities like ³⁹Ar, ⁸⁵Kr, and ²²²Rn (underground)

