The nEXO neutrinoless double beta decay experiment

Brian Lenardo Stanford University Neutrino Telescopes 2021 Venezia, IT (in spirit!)

Extending the reach of **Οvββ** searches

$0\nu\beta\beta$ decay is a sensitive probe of physics beyond the standard model

- Lepton number violation
- Majorana nature of neutrino
- May explain neutrino mass scale (see-saw mechanism), matter/antimatter asymmetry (leptogenesis)

Avignone, Elliott, & Engel *Rev. Mod. Phys.* **80** (2008)

Current T_{1/2} limits: >10²⁶ years!

Requirements for a next-gen $0\nu\beta\beta$ experiment

- A LOT of the isotope of interest (>10²⁷ atoms)
- Low backgrounds in MeV range (low radioactivity)
- Signal/background discrimination
- Good energy resolution

Liquid xenon time projection chambers (TPCs)

Dual-channel measurement Scintillation light + ionized charge

3-D position reconstruction for each energy deposition

Can fill with ¹³⁶Xe, a $0\nu\beta\beta$ candidate Detector medium = sample

Liquid xenon time projection chambers

Addressing the challenges in $0v\beta\beta$ searches

- A LOT of the $\beta\beta$ isotope (¹³⁶Xe)
 - Ton-scale LXe TPCs are already operating (XENON1T)
 - Xe, while rare, is straightforward to enrich
- Low, well-characterized backgrounds in MeV range (low radioactivity)
 - Very low intrinsic backgrounds
 - Excellent self-shielding reduces external radioactivity
 - Powerful position reconstruction and multi-site rejection to characterize and reject BG
- Good energy resolution
 - Combining charge and light can reach <1% (demonstrated by XENON1T)

Scaling up from EXO-200 to nEXO

EXO-200: 2011 - 2018

- First 100kg-class 0vββ search
- Discovered $2v\beta\beta$ in ¹³⁶Xe
- $T_{1/2} > 3.5 \times 10^{25}$ yr for $0\nu\beta\beta$ in ¹³⁶Xe (*PRL* **123**, 2019)
- Multiple leading limits on other decay modes of ¹³⁶Xe and ¹³⁴Xe
- Pioneered ultra-low-background LXe TPC technology

The nEXO collaboration

University of Alabama, Tuscaloosa AL, USA M Hughes, O Nusair, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan University of Bern, Switzerland J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA M Chiu, G Giacomini, V Radeka, E Raguzin, S Rescia, T Tsang University of California, Irvine, Irvine CA, USA M Moe California Institute of Technology, Pasadena CA, USA P Vogel Carleton University, Ottawa ON, Canada I Badhrees, R Gornea, C Jessiman, T Koffas, B. Veenstra, M Elbeltagi, S Viel, D Goeldi, B Chana Colorado State University, Fort Collins CO, USA C Chambers, A Craycraft, D Fairbank, W Fairbank Jr, A Iverson, J Todd Indiana University, Bloomington IN, USA JB Albert, SJ Daugherty, G Visser Drexel University, Philadelphia PA, USA MJ Dolinski, P Gautam, E Hansen, YH Lin, E Smith, Y-R Yen

ITEP Moscow, Russia V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich Laurentian University, Sudbury ON, Canada B Cleveland, A Der Mesrobian-Kabakian, J Farine, C Licciardi, A Robinson, U Wichoski, E Caden Lawrence Livermore National Laboratory, Livermore CA, USA J Brodsky, M Heffner, A House, S Sangiorgio, T. Stiegler University of Massachusetts, Amherst MA, USA S Fevzbakhsh, D Kodroff, A Pocar, M Tarka McGill University, Montreal QC, Canada T Brunner, K Murray, T Totev, L Darroch, S Al Kharusi, T McElroy University of North Carolina, Wilmington, USA **T** Daniels Oak Ridge National Laboratory, Oak Ridge TN, USA L Fabris, RJ Newby Pacific Northwest National Laboratory, Richland, WA, USA I Arnquist, EW Hoppe, JL Orrell, G Ortega, C Overman, R Saldanha, R Tsang, ML De Vacri University of South Dakota, Vermillion SD, USA T Bhatta, A Larson, R MacLellan

L Yang, J Echevers Université de Sherbrooke F Bourgue, S Charlebois, M Côté, D Danovitch, H Dautet, R Fontaine, F Nolet, S Parent, JF Pratte, T Rossignol, J Sylvestre, F Vachon Duke University, Durham NC, USA PS Barbeau, J Runge Friedrich-Alexander-University Erlangen, Nuremberg, Germany G Anton, J Hoessl, T Michel, M Wagenpfeil, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea **DS** Leonard IHEP Beijing, People's Republic of China G Cao, W Cen, Y Ding, X Jiang, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, X Zhang, J Zhao IME Beijing, People's Republic of China L Cao, X Jing, Q Wang Rensselaer Polytechnic Institute, Troy NY, USA E Brown, K Odgers, A Fucarino

SLAC National Accelerator Laboratory, Menlo Park CA, USA S Delaguis, A Dragone, G Haller, LJ Kaufman, B Mong, A Odian, M Oriunno, PC Rowson, K Skarpaas Stanford University, Stanford CA, USA J Dalmasson, R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, M Patel, A Schubert, M Weber, S Wu, B Lenardo Stony Brook University, SUNY, Stony Brook NY, USA K Kumar, O Njova Technical University of Munich, Garching, Germany P Fierlinger, M Marino **TRIUMF, Vancouver BC, Canada** J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland Yale University, New Haven CT, USA A Jamil, Z Li, D Moore, Q Xia Colorado School of Mines, Golden, CO K.G. Leach, C.R. Natzke

Brian Lenardo

NeuTel 2021

nEXO's TPC design updates

Monolithic detector volume

- >3 ton (~10²⁸ atoms) fiducial volume
- Powerful self-shielding
- Measure backgrounds directly in the same detector

Advanced scintillation readout

- VUV-sensitive SiPMs

Custom tiled charge readout

- Lower radioactivity, modular construction compared to wires

In-liquid-xenon, cold electronics

- Low-background ASICs for both light and charge readout

Charge readout

Gold strips on quartz substrate

- 6mm pitch
- 3mm prototype tested: Jewell et al. JINST 13 (2018)

In-LXe cold electronics

- Lower noise, smaller cable capacitance
- Stringent radioactivity & power requirements
- Custom ASICs under development

Advanced reconstruction techniques under study

Li et al., JINST 14 (2019)

Brian Lenardo

NeuTel 2021

Scintillation readout

nEXO will use VUV-sensitive SiPMs for scintillation readout

- Lower noise than APDs in EXO200
- Better radiopurity than PMTs

Relatively new technology -- extensive R&D and characterization ongoing within collaboration

- Photon detection efficiency, noise properties
 - Ostrovskiy et al., *IEEE TNS* 62 (2015) arXiv:1502.07837
 - Jamil et al., IEEE TNS 65 (2018) arXiv:1806.02220
 - Gallina et al., *NIM A* **940** (2019) arXiv:1903.03663
- Development of in-LXe ASIC readout

Estimating radioactive backgrounds

Extensive materials screening campaign, following success of EXO-200 (e.g. D. Leonard, NIMA 591 (2008))

Essentially every material in existing design has been screened for radiopurity \rightarrow nEXO background model is conservative and data-driven

Brian Lenardo

Expected performance - Geant4 simulation

Brian Lenardo

NeuTel 2021

Projected physics reach ca. 2018

Recent improvements in readout simulations

Charge readout modeled end-to-end

- Full noise simulation of ASIC readout and charge propagation through TPC
- Induction and noise signals generated to mimic real data
 - Z. Li et al. (NEXO) JINST 14 (2019)
- Machine learning classifier likely to improve signal/bkg discrimination

Light collection modeling improved with new data and software

- High-stats, fine-grained simulation using GPU-based Chroma software
- New measurements of SiPM optical properties and performance
 - P. Nakarmi et al. (NEXO) JINST 15 (2020)
 - G. Gallina et al. (NEXO) NIMA 940 (2019)
 - A. Jamil et al. (NEXO) IEEE TNS 65 (2018)
 - P. Lv et al. (NEXO) *IEEE TNS* **67** (2020)
 - M. Wagenpfeil et al. (NEXO) In preparation
- Improvements in projected light collection based on new data

Charge reconstruction of OnuBB event with a bremsstrahlung

/ coordinate (mm)

0 e-0 e-0 e-0 e-

0 e-0 e-0 e-0 e-

0 e.

Avenues for further background reduction

- Muon tagging via Cherenkov light detection
- Reduces ¹³⁷Xe β -decay bkg; largest in innermost LXe

Brian Lenardo

NeuTel 2021

200

300

400

500

600 Standoff [mm]

 10^{-5}

100

Conclusions

nEXO will use a monolithic liquid xenon TPC to search for neutrinoless double beta decay in ¹³⁶Xe:

- Projected sensitivity approaching 10²⁸ years
- Data-driven design; backgrounds are estimated using measured activities and experience from the successful EXO-200 experiment

Ongoing R&D:

- Materials for better radiopurity
- Cosmogenic veto for reduction of ¹³⁷Xe backgrounds
- Testing and optimization the light/charge readout schemes
- Continued development of cold, low-background electronics
- Development of calibration methods and plans
- Improving event reconstruction for higher sensitivity
- In-line distillation for removal of ²²²Rn