Cosmic ray induced Background study at the JSNS² experiment

HyoungKu Jeon for the JSNS² collaboration

Introduction of JSNS² experiment

The J-PARC Sterile Neutrino Search at the J-PARC Spallation Neutron Source (JSNS²) experiment has started a study of neutrino oscillations with $\Delta m^2 {\sim} 1~eV^2$ from anti-muon neutrinos to anti-electron neutrinos detected via inverse beta decays(IBD) which are tagged via gammas from neutron captures on Gadolinium.

JSNS² is the only experiment that can directly test the LSND anomaly without having to rely on theoretical scaling assumptions.

The JSNS² experiment successfully collected 10 days of data from the first physics run in June 2020 and a second physics data run has been started from Jan 2021.

related talk: Current status & plan of JSNS2/JSNS2-II (Dongha) 25/Feb

This study shows the background single rate using 10 days of data of the first physics run.

Expected background sources:

Cosmic- μ tagging & Michel electron

Muon tagging condition (cut efficiency ~ 99%)
Top Veto Charge > 100 PE
or
Bottom Veto Charge > 100 PE

- The events which get over the veto charge threshold are defined as cosmic- μ .
- The background single rate will contain a 20% systematic uncertainty.
- Michel electrons are produced by the decay at rest of cosmic muons that are stopped in the detector.
- To measure Michel electron events, A coincidence method was used.
 - \rightarrow Prompt event : Cosmic muon(μ) that was selected by muon tagging.
 - \rightarrow Delayed event : Michel electron(e^-) with energies 20 60 MeV.
 - $ightarrow \Delta T_{p-d}: 0 \sim 10~\mu s$, $\Delta T_{p-d}^{acc}: 10 \sim 20~\mu s$

Fast neutron & additional n-Gd capture

,

The fast neutron are also identified by a coincidence method with different selection criteria.

- \rightarrow Prompt event : Recoil proton(p) due to the fast neutron with energies of 20 60 MeV.
- \rightarrow Delayed event : A neutron(n) that is captured by Gadolinium(Gd) in the LS after thermalization.

$$\rightarrow$$
 $\Delta T_{p-d}: 0 \sim 100 \ \mu s$ $\Delta T_{p-d}^{acc}: 100 \sim 200 \ \mu s$

- Definition of additional n-Gd capture: the high-energy fast neutrons appear like cosmic muon events in the inner
 volume, followed by the n-Gd event.
- The criteria for additional n-Gd events are different from the prompt event of the fast neutron.
 - → Prompt event : Events which are tagged as muons.

Cosmic gamma & Summary

Summary

- JSNS² measured the IBD background's single event rate.
- In order to measure the Cosmic- γ rate, we subtracted the rate of other background components from the total event rate.
 - \rightarrow Total event rate Cosmic- μ & Michel electron & fast neutron = cosmic gamma
- The Measured rate was slightly larger than we expected.
 - \rightarrow the analysis has just started. We have a lot of an opportunity to improve our data selection.
- A larger dataset is now being acquired, which will allow us to improve this measurement.
 - related talk: PMT Waveforms for Pulse Shape Discrimination in JSNS2 (Sanghoon) 24/Feb Beam-related gamma background at the JSNS2 (Daeun) 26/Feb

Rate [#events/Spill]

exptected

 1.4×10^{-6}

 3.8×10^{-4}

 4.4×10^{-3}

Backup slide

Event Condition

- Above plot shows the event rate of the Cosmic- μ with total event rate.
- From tagged muon, I searched the pair events which the candidate of Michel electron via event pair condition.

► Event pairing condition

Muon Tagging

① TV > 100 PE or BV > 100 PE

Michel electron

- ① Prompt : Muon
 - 0 < E < 800 MeV
- ② Delayed : Michel e 0 < E < 100 MeV
- 3 Time diff $\Delta T < 10us$ Time diff [acc] $10us < \Delta T < 20us$

Fast neutron

- Prompt
 - 0 < E < 100 MeV
- Delayed: n-Gd
 - 0 < E < 20 MeV
- 3 Time diff $\Delta T < 100us$

Time diff [acc]

 $100 \text{us} < \Delta T < 200 \text{us}$

Additional n-Gd

- ① Prompt : Muon
 - 0 < E < 800 MeV
- 2 Delayed : n-Gd
 - 0 < E < 20 MeV
- 3 Time diff

 $20 us < \Delta T < 100 us$

Time diff [acc]

 $100us < \Delta T < 180us$