Constraining the NC π^o Background for MicroBooNE's Single-Photon Search

Andrew J. Mogan

NeuTel 2021

2/26/21

MiniBooNE Low-Energy Excess

- Observed excess of electron neutrino-like events below 600 MeV
- Cherenkov detector; difficulty distinguishing photons and electrons
- MicroBooNE is searching for $\Delta \rightarrow N\gamma$ to investigate photon-like hypothesis
 - See talk by M. Ross-Lonergan

Neutral Current (NC) π^{o}

- NC π⁰s comprise ~80% of backgrounds for the NC Δ radiative decay search
 - $\Delta \rightarrow N\gamma$ branching ratio: ~0.6%
 - $\circ \quad \Delta {\rightarrow} N\pi \text{ branching ratio: } {\sim} 99.4\%$
- NC π^0 events in which only one photon is reconstructed look nearly identical to Δ radiative decays
- One-shower, one-track topology (1γ1p) vs. two-shower, one-track (2γ1p) topology
- Plan: use single-photon analysis framework to select NC π^0 events for **data-driven rate** constraint

Analysis Flow

- 1. Signal Topology
- Start with reconstructed tracks and showers [2]
- Select events with two showers (2γ) and one track (1p)

2. Reject Backgrounds

- Use tailored Boosted Decision Tree (BDT)
 [3] trained on background events
- Reject backgrounds by cutting on BDT response

3. High-Stats NC π^o Selection

- Result is the world's highest-stats NC π⁰ selection on argon
- Constrain single-photon NC π⁰ background

[2] Acciarri, R. et. al. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector. *The European Physical Journal C*, 78(1), 1-25.

[3] Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: extreme gradient boosting. *R package version 0.4-2*, 1-4.

Boosted Decision Tree

- Train Boosted Decision Tree (BDT) to reject backgrounds
- Input simulated kinematic and geometric variables
 - Shower energy, shower conversion distance, track length, etc.
- BDT learns to separate signal and background based on input variables
- Cut on BDT response (score) to maximize efficiency times purity in the final selection

Final Selection

- ~20% difference between number of selected data events and MC prediction
 - \circ Consistent with 1σ lower bound on interaction model estimate
- Gaussian-plus-linear fit to mass peak data gives a mean of 138.9 ± 2.1 MeV

Constraint Result

- NC π^0 constraint provides a large reduction in correlated interaction uncertainties
- Significantly improves sensitivity to photon-like LEE signal

Photon showers

Proton track

- Demonstrated world's highest-stats NC π⁰ selection on Argon
 - Still more data to process!
- Constraint provides a significant reduction in single-photon systematics

MicroBooNE Data, Run 15318 Subrun 159 Event 7958

MicroBooNE

- 170-ton (89 ton active volume) Liquid Argon Time Projection Chamber (LArTPC)
- Operating along Fermilab's Booster Neutrino Beam (BNB) since 2015
- Primary goal: investigation of the MiniBooNE Low-Energy Excess (LEE)

Pre-Selection Distributions

- Before BDTs, apply some conservative pre-selection cuts
 - Shower energies, conversion distance, etc.

NeuTel 2021 | 2/26/21

• Signal (red) dominated by off-beam (green) and on-beam backgrounds (blue and brown)

BDT Training

- Train BDT on various kinematic and calorimetric variables in simulation
- Training variables chosen based on separation power between signal and background
- Example: track dE/dx (left)
 - dE/dx: energy deposition per unit length
 - Separates events with proton-like track for 2g1p selection
 - Peak at 2 MeV/cm mostly from muon tracks

Pre-Selection Cuts

- 2g1p pre-selection cuts:
 - 5 cm fiducial volume on vertex
 - Both shower conversion distances > 1 cm
 - Leading shower energy > 30 MeV
 - Subleading shower energy > 20 MeV
 - Distance from track start point to vertex < 10 cm

- 2g0p pre-selection cuts:
 - 5 cm fiducial volume on vertex
 - Leading shower energy > 30 MeV
 - Subleading shower energy > 20 MeV

Training Variables

- 2g1p Training variables:
 - Both shower conversion distances
 - Both shower impact parameters
 - Track length
 - Track θ_{yz}
 - Distance from track end point to nearest TPC wall
 - Track mean truncated dE/dx (shown here)
 - Ratio of track start/end dE/dx

- 2g0p Training variables:
 - Both shower conversion distances
 - Both shower impact parameters
 - Both shower energies
 - Both ratios of shower length/energy
 - Leading shower θ_{vz}
 - Pandora neutrino slice score

Shower Energy Correction

- Shower energy losses due to misclustering and thresholding effects
- Shower energy correction factor derived from fit to reco vs. true shower energy

 $E_{\rm corr} = (1.21 \pm 0.03) E_{\rm reco} - (-9.88 \pm -4.86) \,\,{\rm MeV}$

BNB Other Backgrounds

- Percentages relative to BNB Other, which comprise ~10% of final selection
- Single largest component is cosmic contamination
- Other large backgrounds include general CC events, η's, and "other"

Background	Percentage			
π^0 Charge Exchange	11.9			
CC Multi- π^0	5.3			
CC Other	14.7			
NC Other	6.3			
η	18.8			
Overlay	28.3			
Other	14.8			

CC π^{o} Backgrounds

- Percentages relative to CC π^0 , which comprise ~10% of final selection
- Most have track matched to proton, not muon
 - Muon tracks sometimes not reconstructed
 - Looks exactly like signal

Background	Percentage		
Proton track	49.6		
Muon track	11.5		
Shower Mis-ID	31.4		
Overlay	2.2		
Other	5.4		

Interaction Types

- ~80% resonant interactions in both 2γ1p and 2γ0p
- More coherent in 0p selection

	Resonant	DIS	\mathbf{QE}	Coherent	MEC
$2\gamma 1p$					
Pre-Selection	81.3%	16.3%	1.3%	1.31%	0.06%
Final Selection	85.2%	13.2%	1.2%	0.28%	0.07%
$2\gamma 0p$					
Pre-Selection	79.1%	14.9%	0.52%	5.5%	0.02%
Final Selection	79.2%	13.5%	0.45%	6.8%	0.00%

