Measurement of the θ_{13} neutrino mixing angle with the two detectors of the Double Chooz experiment

Diana Navas Nicolás Université Paris-Saclay, CNRS/IN2P3, IJCLab

On behalf of the Double Chooz collaboration

XIX International Workshop on Neutrino Telescopes 26 February 2021

CMIS

STATUS ON NEUTRINO OSCILLATION KNOWLEDGE

- Standard Model (3 families)
- $PMNS_{3x3}(\theta_{12},\theta_{23},\theta_{13}+1 \delta_{CP} phase)$
- Two independent square mass differences $\pm \Delta m^2$, δm^2

PMNS Matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Flavour eigenstates (creation/detection) Mass eigenstates (propagation)

	Experiment	NuFIT 5.0
θ ₁₂	SNO+SK	2.3%
θ ₂₃	ΝΟνΑ	2.1%
θ ₁₃	Reactor exp	1.4%
δm ²	KamLAND	2.8%
$ \Delta m^2 $	T2K+DYB	1.1%
Sign Δm^2	unknown	NO ~3σ
CPV	unknown	Favored $\sim 3\sigma$

Must measure all parameters with high precision

Characterise & test (i.e. over-constrain) Standard Model

 θ_{13} cannot be measured by others than reactor experiments !

Status of θ_{13}

Reactor- θ_{13} experiments Double Chooz \oplus Daya Bay \oplus RENO

CHALLENGES:

- Statistics: ~10⁵ (far) [<10⁶]
- Systematics: order of 0.1% (each)
 - Detection
 - Flux
 - BG
- Energy control: <1% precision

THE DOUBLE CHOOZ SITE

 $\bar{\mathbf{v}}_{e}$ disappearance is directly related with θ_{13} FAR DETECTOR **NEAR DETECTOR** L = 1050 m 300 m.w.e Chooz L = 400 m 120 m.w.e $P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ $= 1 - \sin^2 2\theta_{13} \sin^2 \left[\frac{1.27\Delta m_{13}^2 (eV^2) L(m)}{1.27\Delta m_{13}^2 (eV^2) L(m)} \right]$ $\sim 800 \nu/day$ \sim 100 ν /day FRANCE (April 2011 – Dec 2017) (Dec 2014 – Dec 2017) $E_{\nu}(MeV)$ $1/\Delta m_{31}^2$ $\sin^2\theta_1$ $\sin^2 \theta_{12}$ $\approx 1/\Delta m_{21}^2$ 10-1 10 L/E (km/MeV) Antineutrinos are produced in nuclear reactors by the β -decay of the fission **CNPE** Chooz products: 2 x 4.27 GWth ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu $10^{21} v/s$

Inverse β decay

Η

 $\sim 30\,\mu s$

$\overline{\nu}_e + p \rightarrow n + e^+$

8 MeV

 $\sim 200 \, \mu s$

• Prompt signal Energy losses + e⁺ anihilation E(prompt) \simeq E(\bar{v}_e) - 0.8 MeV

Delayed signal
 Neutron capture on Gadolinium
 (Gd), emission of 8 MeV γ rays

 * Alternatively, n-capture on Hydrogen (H) (~2.2 MeV)

2.2 MeV

THE DOUBLE CHOOZ DETECTORS

Smallest ν -target θ_{13} reactor experiments

NEW DATA

MOTIVATION FOR THE TNC TECHNIQUE

Statistics is limiting factor in the sensitivity of θ_{13}

- Major increase of the detection volume
 - Increase of signal statistics by more than a factor of 2.5 (Gd-only)

4 LAYERS DETECTOR STRUCTURE

BACKGROUND REJECTION

Challenge: control of larger BGs

BETTER CONSTRAINT OF COSMOGENIC BG

⁹Li Rate uncertainty 7% Fast-neutron Rate uncertainty 1% Accidental Rate uncertainty < 1%

- Help to further constraint the FN rate
- Data driven spectra (model)

REACTORS OFF DATA

DIRECT MEASUREMENT OF THE BACKGROUNDS

Background understanding

	Events/day FD	Events/day ND
OFF-OFF (2012)	8.9 ± 1.2	
OFF-OFF (2017)	9.8 ± 0.9	39.6 ± 2.5
BG estimated (fit)	9.3 ± 0.3	38.5 ± 1.5

Good agreement, all numbers within 1σ

+cc + FN + Li⁹

20

2-0FF

ND Data

⁹Li

Double Chooz

Preliminarty

REACTORS-OFF

15

10

Visible Energy (MeV)

Accidentals

Fast Neutrons

- \sim 7 days of 2-Off data (only FD working)
- ~23 days of 2-Off data (FD & ND)

Shape info used for first time in the Rate+Shape θ_{13} fit

 New Reactor-off Data gives extra constrains on BG above 3 MeV

MAJOR CANCELLATION OF REACTOR FLUX

ISOFLUX CONFIGURATION

- Relative contribution by each reactor to the total detected \bar{v}_e flux is almost the same for both detectors. The ND becomes an effective monitor of the FD.
- Reactor flux error highly suppressed with multi-detectors

POSITRON ENERGY MODEL

- More Data allowed:
 - Better understanding of detector stability & uniformity
- Deticated calibration campaigns allowed:
 Extra constrain of light & charge non-linearities
- Energy controlled ~0.5% in θ_{13} region

θ_{13} Rate+Shape Oscillation Fit

 $\sin^2(2\theta_{13}) = 0.102 \pm 0.012$

 $\sin^2(2\theta_{13}) = 0.102 \pm 0.011 \text{ (syst)} \pm 0.004 \text{ (stat)}$

(stable result also for Rate or Shape only analysis)

Inter-detector ratio (reactor model cancellation)

Systematics Breakdown

15

0.016 V [Nature Physics] THIS TALK AR 0.012 0.0081 23% 0.0073-12% 0.008 8% 0.0064 0.0054 0.0064 0.0062 18% 0.0059 0.0044 0.004 0.0018 5% 28% 0.0018-50% 8100.0 ~0.2% ?? 00.0017 ~0.1% 0.0013(if new GC p# unc 0.0009 (isoflux ND:FD) \sim to ν -target unc) 0.000 Energy Flux ∆m2 Statistics Background Correlation Detection [proton#]

MEAN CROSS-SECTION PER FISSION

Statistical uncertainty Experimental uncertainty Total uncertainty DC IV (ND) $(\sigma_{\rm f}) = (5.71 \pm 0.06)$ 10⁻⁴³ cm² per fission TnC (n-H + n-C + n-Gd)R(ND)=0.925±0.002(stat)±0.010(exp)±0.023(model) $(\sigma_{\rm f}) = (5.75 \pm 0.08) \quad 10^{-43} \,{\rm cm}^2 \,{\rm per} \,{\rm fission}$ Bugey4 *Phys. Lett. B* **338**, 383 (1994) ³He Daya bay (*) 10⁴³ cm² per fission $(\sigma_{\rm f}) = (5.91 \pm 0.12)$ CPC 41.1.013002 (2017) *n*–Gd 2017 world average (*) (Includes Bugey4 & Daya bay) CPC 41.1.013002 (2017) Reactor model uncertainty (\approx 2.3%) 0.85 0.90 0.95 1.00 Data-to-prediction ratio

$$N_{\nu}^{exp}(t) \propto \epsilon \frac{N_p}{L_R^2} \frac{P_{th}^R}{\langle E_f \rangle_R} \langle \sigma_f \rangle_R$$

Best Integral Flux Measurement to Date

EXCELLENT AGREEMENT WITH BUGEY4 AND DAYA BAY

DC ND Fission fraction (2 reactors weighted)

 $^{235}U \rightarrow 0.520$ $^{238}U \rightarrow 0.087$ $^{239}Pu \rightarrow 0.333$ $^{241}Pu \rightarrow 0.060$

(*) Results before Neutrino 2018

PROSPECTS AND CONCLUSIONS

- Extra statistics → Better bkg constraint, detection systematics, flux cancellation and stability
- Reactor off \rightarrow Better bkg constraint
- Improved energy systematics
- New result: $\sin^2(2\theta_{13}) = 0.102 \pm 0.012$ (w/ full two detectors data)

- Detector dismantling underway. Goal: a better GC proton number measurement
- Still room for $\sin^2(2\theta_{13})$ improvement $(1\sigma \leq 0.01)$

THANK YOU!

18

doublechooz.in2p3.fr