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Neutrino mass constraints: recent history

CMB alone will not be able to detect the neutrino mass.

→ Large scale structures

+
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Euclid in a nutshell
Main scientific objectives:
• Dark energy
• Modified gravity
• Initial conditions (inflation)
• Massive neutrinos
VIS+NISP: Shapes of > 1 bilion of galaxies and the redshifts of > 50 milions of galaxies
aiming at 1% accuracy on the main observables:

Weak gravitational lensing Galaxy clustering Baryonic Acoustic Oscillations
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Matter power spectrum
P (k) =

R
⇠(r)eik·rd3x,

⇠(r) = h�(x)�(x+ r)i
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Matter power spectrum with neutrinos
P (k) =

R
⇠(r)eik·rd3x,

⇠(r) = h�(x)�(x+ r)i
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Matter power spectrum with neutrinos
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Known unknowns:

1. Galaxy bias Pgalaxy = b2 Pmatter + N (see

Castorina+ 2014)

2. Non-linearities (see Euclid Collaboration: 

Martinelli, Tutusaus, Archidiacono+ 2020; Euclid

Collaboration: Knabenhans+ 2020)

3. Baryonic feedback (see Chisari+ 2019)

Exploiting the data …                               
without neglecting the uncertainties
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Theoretical uncertainties: Weak Lensing
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Figure 1. Euclid cosmic shear combined with Planck (see section 6 for details): sensitivity to a 0.1%-
variation of P (k) for di↵erent cuto↵ wavenumbers (always scaled with redshift). The flat `max = 5000
cut-o↵ (blue) shows the amount of information available in absence of a cut-o↵. The second (green) and
third (red) cases are more conservative than a sharp cut-o↵ at ` = 1310 would be. For comparison, the
dashed line marks ` = 1310, corresponding to the `

max

used by the KiDS collaboration in Ref. [52]
as a reasonable cut-o↵ producing stable results. The last case (cyan) is a little more constraining
than this sharp cut-o↵, intended to reflect improvements in non-linear modeling in the analysis of
future data. For our analysis we will use k

NL

(0) = 0.5h/Mpc (conservative) and k
NL

(0) = 2.0h/Mpc
(realistic) as our non-linear cut-o↵ wavenumbers. The corresponding 1-� sensitivity of our MCMC
forecasts can be seen in table 6.

Table 6. Planck (see section 6) plus Euclid cosmic shear 1-� sensitivity (normalized by corresponding
Planck-only values) of MCMC forecasts for the non-linear cut-o↵ values used in Figure 1. We see that
most sensitivities do not depend strongly on the choice of a given k

NL

(0). Only ns and M⌫ show a
non-negligible improvement in sensitivity, despite the large changes in the cut-o↵. Therefore, we find
that the non-linear cut-o↵ scheme is appropriate for our analysis.

kmax 100!b !cdm ✓s ln(1010As) ns ⌧reio M⌫ [eV]
0.5 h/Mpc 0.77 0.27 0.97 0.94 0.72 0.96 0.50
1.0 h/Mpc 0.76 0.27 0.94 0.95 0.70 0.98 0.41
2.0 h/Mpc 0.76 0.25 0.97 0.94 0.65 0.97 0.36
lmax = 5000 0.74 0.24 0.94 0.94 0.58 0.96 0.30
Planck only 1.00 1.00 1.00 1.00 1.00 1.00 1.00

for every redshift and wavenumber. The resulting contributions ��2
` solely depend on the

characteristics of the likelihood.
In Figure 1 we see the ��2

` contributions to the Euclid cosmic shear likelihood for
di↵erent choices of kNL(0). Whenever ` reaches a value where an additional redshift bin has
to be discarded according to the cut-o↵ scheme described above, the ��2 drops sharply. A
comparison of forecasts for Planck + Euclid cosmic shear for the same values of kNL(0) is
shown in Table 6. We see that the sensitivity does not di↵er by a large amount despite great
changes in the non-linear cut-o↵, with only ns and M⌫ showing non-negligible improvement
in sensitivity with increasing cut-o↵ values. Since the results do not depend strongly on the

– 13 –

Conservative: knl(0)=0.5 h/Mpc
Optimistic: knl(0)=2.0 h/Mpc

Planck+Euclid-WL

Conservative 43 meV
Optimistic 30 meV

Fiducial Smn = 60 meV

Sprenger, Archidiacono, Brinckmann, Clesse, Lesgourgues, JCAP 2019
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Theoretical uncertainties: Galaxy Clustering
Sprenger, Archidiacono, Brinckmann, Clesse, Lesgourgues, JCAP 2019
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0.33% at k=0.01 h/Mpc
1%      at k=0.3 h/Mpc
10%    at k=10 h/Mpc

Conservative: knl(0)=0.2 h/Mpc
Optimistic: th. err. & kmax(0)=10 h/Mpc

See also Baldauf+ 2016

Planck+Euclid-GC

Conservative 26 meV
Optimistic 20 meV

Fiducial Smn = 60 meV
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Neutrino mass constraints: the future
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Neutrino mass constraints: the future

Higher order statistics can break degeneracies in extended models (Chudaykin+ 2019, Hahn+ 2020, Ajani+ 2020) 
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Neutrino mass ordering
Archidiacono, Hannestad, Lesgourgues, JCAP 2020
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Conclusions

• Euclid can provide a 3s evidence for a non-zero neutrino mass sum in the 
minimal LCDM model

• If Smn is about 0.06 eV, then the sensitivity to Smn will indirectly favour 
Normal Ordering

• Theoretical challenges: get ready for Euclid!
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Reconstructing the matter power spectrum
P (k) =

R
⇠(r)eik·rd3x,

⇠(r) = h�(x)�(x+ r)i
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Castorina+ 2014)

2. Non-linearities (see Euclid Collaboration: 

Martinelli, Tutusaus, Archidiacono+ 2020; Euclid

Collaboration: Knebnhans+ 2020)

3. Baryonic feedback (see Chisari+ 2019)

Exploiting the data without neglecting the 
uncertainties



The neutrino mass challange
�cdm / a

�cdm / a1�
3
5

⌦⌫
⌦m , ⌦⌫ =

P
m⌫

93.14

In a massless neutrino Universe

In a massive neutrino Universe

~3%

�cdm / a1�
3
5

⌦⌫
⌦m , ⌦⌫ =

P
m⌫

93.14

0.01 0.1

1.8

2.0

2.2

2.4

2.6

2.8

k @hMpc-1D

bHkL

M > 4â1013 Mü
z = 0

Phh ê Pmm
Phh ê Pcc

0.01 0.1

1.8

2.0

2.2

2.4

2.6

2.8

k @hMpc-1D

bHkL

M > 4â1013 Mü
z = 0

Pmh ê Pmm
Pch ê Pcc

0.01 0.1

2.5

3.0

3.5

4.0

k @hMpc-1D

bHkL

M > 4â1013 Mü
z = 0.5

Ph ê Pm
Ph ê Pc

0.01 0.1

2.5

3.0

3.5

4.0

k @hMpc-1D

bHkL

M > 4â1013 Mü
z = 0.5

Pmh ê Pm
Pch ê Pc

0 eV

0.3 eV

0.6 eV

Castorina+ 2014

See also Vagnozzi+ 2018

1. Galaxy bias: Pgalaxy = b2 Pmatter + N

Challanges:
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2. Non-linearities: d ~ 1

Challanges:

�2 = k3P (k)
2⇡2

Bird+ 2012

Linear
N-body Sims.
Halofit

See also Euclid Collaboration: Martinelli+ 2020
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2. Non-linearities: d ~ 1

Challanges:

Euclid Collaboration. Knabenhans+ 2020
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3. Baryonic feedback

Chisari+ 2019

Challanges:

See also Euclid Collaboration: Martinelli+ 2020


