Euclid and the challange of neutrino mass detection

Maria Archidiacono

UNIVERSITÀ DEGLI STUDI DI MILANO

Timeline of neutrino cosmology

See talk by Steen Hannestad

Timeline of neutrino cosmology

See talk by Steen Hannestad

Timeline of neutrino cosmology

See talk by Steen Hannestad

Neutrino mass constraints: recent history

CMB alone will not be able to detect the neutrino mass.

 \rightarrow Large scale structures

Euclid in a nutshell

Laureijs+ 2012

Main scientific objectives:

- Dark energy
- Modified gravity
- Initial conditions (inflation)
- <u>Massive neutrinos</u>

VIS+NISP: Shapes of > 1 bilion of galaxies and the redshifts of > 50 milions of galaxies aiming at 1% accuracy on the main observables:

Weak gravitational lensing

Galaxy clustering

Baryonic Acoustic Oscillations

Matter power spectrum

Maria Archidiacono – University of Milan

Matter power spectrum with neutrinos

$$P(k) = \int \xi(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} d^3x,$$
 In a massless neutrino Universe $\delta_{cdm} \propto a$

$$\xi(\mathbf{r}) = \langle \delta(\mathbf{x})\delta(\mathbf{x}+\mathbf{r}) \rangle$$
 In a massless neutrino Universe $\delta_{cdm} \propto a^{1-\frac{3}{5}} \frac{\Omega_{\nu}}{\Omega_{m}}$

$$I_{10^4} \int_{10^4} \int$$

Maria Archidiacono – University of Milan

 $D(1) \qquad \int c(x) i\mathbf{k} \cdot \mathbf{r} \, \mathbf{i} \mathbf{k}$

Matter power spectrum with neutrinos

In a massless neutrino Universe $\,\delta_{
m cdm} \propto a$

In a massive neutrino Universe $~~\delta_{
m cdm} \propto a^{1-rac{3}{5}rac{\Omega_{
u}}{\Omega_{m}}}$

Known unknowns:

- 1. Galaxy bias $P_{galaxy} = b^2 P_{matter} + N$ (see *Castorina+ 2014*)
- 2. Non-linearities (see Euclid Collaboration: Martinelli, Tutusaus, Archidiacono+ 2020; Euclid Collaboration: Knabenhans+ 2020)
- 3. Baryonic feedback (see Chisari+ 2019)

Exploiting the data ...

without neglecting the uncertainties

0 eV 1.00~3% 0.06 eV $P(k)^{m_v} \neq {}^0/P(k)^{m_v} = 0$ 0.95 **0.1** eV 0.90 0.85 0.3 eV 0.80 10^{-3} 10^{-2} 10^{0} 10^{-1} $k[hMpc^{-1}]$

Theoretical uncertainties: Weak Lensing

Sprenger, Archidiacono, Brinckmann, Clesse, Lesgourgues, JCAP 2019

				-			
k_{\max}	$100\omega_b$	$\omega_{ m cdm}$	θ_s	$\ln(10^{10}A_s)$	n_s	$ au_{ m reio}$	$M_{\nu} \; [eV]$
0.5 h/Mpc	0.77	0.27	0.97	0.94	0.72	0.96	0.50
1.0 h/Mpc	0.76	0.27	0.94	0.95	0.70	0.98	0.41
2.0 h/Mpc	0.76	0.25	0.97	0.94	0.65	0.97	0.36
$l_{\rm max} = 5000$	0.74	0.24	0.94	0.94	0.58	0.96	0.30
Planck only	1.00	1.00	1.00	1.00	1.00	1.00	1.00

$$k_{nl}(z) \propto k_{nl}(0)(1+z)^{2/(2+n_s)}$$

$$l_{\max}^{zi} = k_{nl}(z) \times \overline{r}_{peak}^{zi}$$

Conservative: $k_{nl}(0)=0.5$ h/Mpc Optimistic: $k_{nl}(0)=2.0$ h/Mpc

Fiducial $\Sigma m_v = 60 \text{ meV}$

	Planck+Euclid-WL		
Conservative	43 meV		
Optimistic	30 meV		

Theoretical uncertainties: Galaxy Clustering

Sprenger, Archidiacono, Brinckmann, Clesse, Lesgourgues, JCAP 2019

$$\frac{d\chi^2}{dkd\mu} = \left[\frac{\Delta P_g(k,\mu,\overline{z})}{\sigma_{eff}(k,\mu,\overline{z})}\right]^2$$
$$\sigma_{eff}(k,\mu,\overline{z}) = \sigma_{obs}(k,\mu,\overline{z}) \left[k^2 \frac{V_r(\overline{z})}{2(2\pi)^2}\right]^{-1/2}$$
$$\sigma_{eff}(k,\mu,\overline{z}) \propto k^{-2}$$

Conservative: $k_{nl}(0)=0.2 \text{ h/Mpc}$ Optimistic: th. err. & $k_{max}(0)=10 \text{ h/Mpc}$

Fiducial $\Sigma m_v = 60 \text{ meV}$

	Planck+Euclid-GC		
Conservative	26 meV		
Optimistic	20 meV		

Neutrino mass constraints: the future

Neutrino mass constraints: the future

Higher order statistics can break degeneracies in extended models (Chudaykin+ 2019, Hahn+ 2020, Ajani+ 2020)

Neutrino mass ordering

Archidiacono, Hannestad, Lesgourgues, JCAP 2020

Conclusions

- Euclid can provide a $\underline{3\sigma}$ evidence for a non-zero neutrino mass sum in the minimal Λ CDM model
- If Σm_v is about 0.06 eV, then the sensitivity to Σm_v will *indirectly* favour Normal Ordering
- Theoretical challenges: get ready for Euclid!

Backup

Reconstructing the matter power spectrum

In a massless neutrino Universe $\delta_{\rm cdm} \propto a$ $\delta_{
m cdm} \propto a^{1-rac{3}{5}rac{\Omega_{
u}}{\Omega_{m}}}$ In a massive neutrino Universe $\Omega_{\nu} = \frac{\sum m_{\nu}}{93.14}$ $0 \, \mathrm{eV}$ 1.00 ~3% 0.06 eV $P(k)^{m_v} \neq 0/P(k)^{m_v} = 0$ 0.95 **0.1** eV 0.90 0.85 0.3 eV 0.80 10^{-2} 10^{-3} 100 10^{-1} k[h/Mpc]

In a massless neutrino Universe $\delta_{\rm cdm} \propto a$

In a massive neutrino Universe

Challanges:

- 1. Galaxy bias $P_{galaxy} = b^2 P_{matter} + N$ (see Castorina+ 2014)
- 2. Non-linearities (see Euclid Collaboration: Martinelli, Tutusaus, Archidiacono+ 2020; Euclid Collaboration: Knebnhans+ 2020)
- Baryonic feedback (see Chisari+ 2019) 3.

Exploiting the data without neglecting the uncertainties

Challanges:

Galaxy bias: $P_{galaxy} = b^2 P_{matter} + N$

See also Vagnozzi+ 2018

See also Euclid Collaboration: Martinelli+ 2020

See also Euclid Collaboration: Martinelli+ 2020