Importance of second oscillation maxima in probing invisible neutrino decay

Kaustav Chakraborty Physical Research Laboratory, Ahmedabad

XIX International Workshop on Neutrino Telescopes Based on : arXiv:2012.04958

with D. Dutta, S. Goswami, D. Pramanik

Unknowns of 3 Neutrino Paradigm

- Mass Hierarchy:
 Normal Hierarchy(NH)- $\Delta m_{21}^2 > 0$, $\Delta m_{31}^2 > 0$ Inverted Hierarchy(IH)- $\Delta m_{21}^2 > 0$, $\Delta m_{31}^2 < 0$
- •Octant of $\theta_{_{23}}$:
- Lower Octant(LO)- $\theta_{_{23}}$ < 45°
- Higher Octant(HO)- $\Theta_{_{23}}$ > 45°
- •CP violating phase $\boldsymbol{\delta}_{CP}$

The Detection Channels

Long baseline experiments, L ~ 100 km – 1000 km Oscillation governed by Δm²₃₁ 🥥 α, s₁₃ << 1 $P_{\mu e} = 4s_1^2 (s_{23}^2) \frac{\sin^2(\hat{A}-1)\Delta}{(\hat{A}-1)^2}$ $(\sin \hat{A} \Delta \sin (\hat{A} - 1) \Delta)$ + $2\alpha s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta + \delta_{CP})$ $+ \alpha^2 \sin^2 2\theta_{11} c_{23}^2 \sin^2 \hat{A} \Delta / \hat{A}^2,$ $P_{\mu\mu} = 1 - \sin^2 2\theta_{23} / \sin^2 \Delta + \text{higher order terms},$ Hierarchy Sensitive Terms $\Delta = \Delta m_{31}^2 L/4E$ Octant Sensitive Terms

Oscillation Maxima

 $\sin^2(\Delta m_{31}^2 L/4E) = 1$ $\Delta m_{31}^2 L/4E = n\pi/2$

Experimental Details

Experiment	Baseline Length	Peak Energy	Oscillation Maxima
T2HK	295 km	0.6 GeV	First Oscillation Maxima
Т2НКК	295 km (L1) ; 1100 km (L2)	0.6 GeV	Hybrid Setup. Both oscillation maxima
ESSvSB	540 km	0.35 GeV	Second Oscillation Maxima

Why Neutrino Decay?

• If neutrinos have mass, there is a possibility they can decay

The stability of neutrino can be tested experimentally

The possibility of pure neutrino decay excluded at 4σ by Super-K.

Decay along with oscillation is still a possible scenario.

Neutrino Decay

Visible Decay

Invisible Decay

Final State is flavour state. They can be detected.

Helicity conserving decay

$$\nu_j \to \nu_i + J$$

Helicity non-conserving decay

$$\nu_j \to \bar{\nu}_i + J$$

Final state is sterile. Final state below threshold of experiment.

In our case

 $\nu_j \rightarrow \nu_s + J$

Constraints on Invisible Neutrino decay

MINOS	$\tau_{_3} / m_{_3} > 2.1 \times 10^{-12} \text{s/eV}$	$\alpha_{_3} < 3.13 \times 10^{-4} eV^2$
Т2К	$\tau_{3} / m_{3} \sim 7.8 \times 10^{-13} - 8.3 \times 10^{-12}$ s/eV	$\alpha_{3} \sim 7.9 \times 10^{-5} - 8.4 \times 10^{-4}$ eV ²
MINOS + T2K	$\tau_{_3}$ / $m_{_3}$ > 2.8 × 10 ⁻¹² s/eV	$\alpha_{_3} < 2.35 \times 10^{-4} eV^2$
LBL + Atm	$\tau_{_3}$ / $m_{_3}$ > 2.9 × 10 ⁻¹⁰ s/eV	$\alpha_{_3} < 2.27 \times 10^{-6} eV^2$
SOLAR	$\tau_{2} / m_{2} > 9 \times 10^{-5} \text{ s/eV}$	$\alpha_2 < 7.3 \times 10^{-12} eV^2$
ICE CUBE	$\tau / m > 10 \text{ s/eV}$	$\alpha < 6.58 \times 10^{-17} eV^2$
SN1987	$\tau / m > 10^{5} \text{ s/eV}$	$\alpha < 6.58 \times 10^{-21} eV^2$
CMB	$\tau / m > 10^{11} \text{ s/eV}$	$\alpha < 6.58 \times 10^{-27} eV^2$

Framework of Neutrino Decay

$$\begin{aligned}
\alpha = \tau_3 / m_3 \\
i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= \left[U \left[\frac{1}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} - i \frac{\alpha}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] U^{\dagger} + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right] \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \\
A = 2\sqrt{2}G_{\text{F}}n_eE \end{aligned}$$
We solve this equation numerically to get P_{µe} and P_{µµ} for our analysis

The vacuum oscillation probability:

$$P_{\mu\mu} = \left[1 - \sin^2 \theta_{23} \left(1 - e^{-\frac{\alpha L}{E}}\right)\right]^2 - \sin^2 2\theta_{23} e^{-\frac{\alpha L}{2E}} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$
Supression factor proportional to α L/E
$$L_{2nd} \sim 3 \times L_{1st}$$
(effect of decay greater)

Appearance Channel

 θ_{23} (LO) = 40 ° θ_{23} (HO) = 51 °

Disappearance Channel

Dependence on θ_{23}

Octant Sensitivity

Disappearance channel do not contribute

Disappearance channel contribution significantly enhanced

Summary of Results

Experiment(s)	$\alpha \ (eV^2)$	$\tau_3/m_3 ~({\rm s/eV})$
T2HK	$\geq 2.42 \times 10^{-5}$	$\leq 2.72 \times 10^{-11}$
T2HKK	$\geq 1.51 \times 10^{-5}$	$\leq 4.36 \times 10^{-11}$
$ESS\nu SB$	$\geq 2.71 \times 10^{-5}$	$\leq 2.43 \times 10^{-11}$
T2HK+ESS ν SB	$\geq 1.51 \times 10^{-5}$	$\leq 4.36 \times 10^{-11}$
$\boxed{\text{T2HKK}+\text{ESS}\nu\text{SB}}$	$\geq 1.19 \times 10^{-5}$	$\leq 5.53 \times 10^{-11}$

Conclusions

The combination of first and second oscillation maxima is best for decay.

The first oscillation maximum has best θ_{23} precision.

At the second oscillation maximum the sensitivity to decay more because of enhanced baseline (for same energy) and/or lower energy (for same baseline).

Thank You

Appearance and Disappearance Contributions

Sensitivity to decay parameter

First vs Second Oscillation Maxima

Oscillation Parameters Used in Analysis

Oscillation parameters	True Values	Marginalization Range
θ_{13}	8.6°	Fixed
θ_{12}	33.82°	Fixed
$\sin^2 heta_{23}$	0.447(LO), 0.56(HO)	0.413 - 0.671
$\Delta m_{21}^2 \ (\text{eV}^2)$	$7.39 imes 10^{-5}$	Fixed
$ \Delta m_{31}^2 \ (eV^2)$	2.52×10^{-3}	$2.3 \times 10^{-3} - 2.6 \times 10^{-3}$
δ	-90°	$-180^{\circ} - 180^{\circ}$