Theory of Fast Flavor Conversion of Supernova neutrinos Soumya Bhattacharyya¹ soumyaquanta@gmail.com Dec 17, 2020

tifr

CONTENT OF THE TALK :

- Equations of motion and a bit of background in the field
- Complicacy and Challenges in the field
- Our Progress
- Theory of SN neutrino oscillations :
 - Multipole diffusion
 Transverse relaxation
- Main results

Phenomenological Consequences and Conclusion

Soumya Bhattacharyya (TIFR Mumbai)

SN Explosion & Neutrinos :

Manibrata Sen, Northwestern University, Evaston (N3AS Network)

Talk at SNNu ECT*, May 16, 2019

Neutrino Oscillations

R < 10 km Trapping No Oscillation (?) Electron antineutrinos / neutrinos decouple earlier / later

R ~ 10 km Decoupling Fast Collective conversion 1/t ~ μ

> R ~ 100 km Free-streaming Slow Collective conversion 1/t ~ (ωμ)^{1/2} Swaps at μ ~ ω

forward scatter with each other and undergo collective oscillations

> forward scatter off electrons and undergo MSW conversions

R ~ 1000 km Free-streaming MSW conversion Resonance at λ ~ ω

Interstellar space Free-streaming Kinematic decoherence

Inside Earth Free-streaming Regeneration

Talk at Neutrino 2018, Heidelberg, June 9, 2018

Basudeb Dasgupta (TIFR Mumbai)

Fast Flavor Conversions : A review

Chakraborty, Hansen, Izaguirre, Raffelt (2016) Ray Sawyer (2005, 2015)

- Conversion occurs very close to the SN core (few km's) with rate \propto Neutrino number density
- 10^5 times faster compared to neutrino oscillation in vacuum/ordinary matter
- Requires a "zero" Crossing in neutrino angular distribution and independent of energy (and mass hierarchy)

EQUATION OF MOTION :

- Neutrino density matrix : $\hat{\rho}[\vec{r}, E, \vec{p}, t] \equiv \hat{\rho}_{E, \vec{p}}$ $\hat{\rho} = \begin{pmatrix} \langle \nu_e | \nu_e \rangle & \langle \nu_e | \nu_\mu \rangle & \langle \nu_e | \nu_\tau \rangle \\ \langle \nu_\mu | \nu_e \rangle & \langle \nu_\mu | \nu_\mu \rangle & \langle \nu_\mu | \nu_\tau \rangle \\ \langle \nu_\tau | \nu_e \rangle & \langle \nu_\tau | \nu_\mu \rangle & \langle \nu_\tau | \nu_\tau \rangle \end{pmatrix}$
 - $\langle \nu_i | \nu_i \rangle$ Total flavor content

 $\langle \nu_i | \nu_j \rangle$ — Amount of flavor conversion

• Equations governing flavor evolution :

$$\left(\partial_t + \vec{v}.\vec{\nabla}\right)\hat{\rho}_{E,\vec{p}} = \hat{H}_{E,\vec{p}}\hat{\rho}_{E,\vec{p}} - \hat{\rho}_{E,\vec{p}}\hat{H}_{E,\vec{p}}$$
$$H_E^{vac} = \frac{\Delta m^2}{2E} \qquad \qquad H^{mat} = \sqrt{2}G_F n_e$$

- Vacuum oscillation
- Dependence on energy

MSW potential
Dependence on electron number density

$$\hat{H}_{E,\vec{p}} = H_E^{vac} + H^{mat} + H_{\vec{p}}^{self}$$
$$H_{\vec{p}}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right)$$

- Neutrino-Neutrino self interaction potential
- Depends on neutrino number density
- Responsible for collective effects (e.g : fast conversion)

EQUATION OF MOTION (FFC) :

We stick to two-flavor framework :

$$\hat{\rho}_{E,\vec{v}} = \begin{pmatrix} \langle \boldsymbol{\nu}_{e} | \boldsymbol{\nu}_{e} \rangle_{E,\vec{v}} & \langle \boldsymbol{\nu}_{e} | \boldsymbol{\nu}_{x} \rangle_{E,\vec{v}} \\ \langle \boldsymbol{\nu}_{x} | \boldsymbol{\nu}_{e} \rangle_{E,\vec{v}} & \langle \boldsymbol{\nu}_{x} | \boldsymbol{\nu}_{x} \rangle_{E,\vec{v}} \end{pmatrix} = \frac{Tr\left(\hat{\rho}_{E,\vec{v}}\right)}{2} \mathbb{I}_{2\times 2} + \frac{g_{E,\vec{v}}}{2} \vec{S}_{E,\vec{v}} \cdot \sigma$$

$$Tr\left(\hat{H}_{E,\vec{v}}\right) = 1$$

$$\hat{H}_{E,\vec{v}} = \frac{Ir\left(H_{E,\vec{v}}\right)}{2}\mathbb{I}_{2\times 2} + \frac{1}{2}\vec{H}_{E,\vec{v}}\cdot\sigma$$

Chakraborty, Hansen, Izaguirre, Raffelt (2016) Dasgupta, Mirizzi, Sen (2017) Bhattacharyya, Dasgupta (2020)

$$\begin{pmatrix} \partial_t + \vec{v}.\vec{\nabla} \end{pmatrix} \hat{\rho}_{E,\vec{v}} = \hat{H}_{E,\vec{v}} \hat{\rho}_{E,\vec{v}} - \hat{\rho}_{E,\vec{v}} \hat{H}_{E,\vec{v}} \longrightarrow \left(\partial_t + \vec{v}.\vec{\nabla} \right) \mathsf{S}_{\omega,\vec{v}} = \left(\mathsf{H}^{\mathrm{vac}}_{\omega} + \mathsf{H}^{\mathrm{mat}} + \mathsf{H}^{\mathrm{self}}_{\vec{v}} \right) \times \mathsf{S}_{\omega,\vec{v}}$$

$$\mathsf{H}^{\mathrm{mat}} = \sqrt{2} G_F (n_{e^-} - n_{e^+}) (0, 0, 1) \qquad \mathsf{H}^{\mathrm{vac}}_{\omega} = \omega \left(\sin 2\vartheta, 0, \cos 2\vartheta \right)$$

$$\mathsf{H}^{\mathrm{self}}_{\vec{v}} = \int d^3 \vec{p}'_{\omega',\vec{v}'} / (2\pi)^3 g_{\omega',\vec{v}'} \left(1 - \vec{v} \cdot \vec{v}' \right) \mathsf{S}_{\omega',\vec{v}'}$$

EQUATION OF MOTION (FFC) :

We stick to two-flavor framework :

$$\begin{split} \hat{\rho}_{E,\vec{v}} &= \begin{pmatrix} \langle \nu_{e} | \nu_{e} \rangle_{E,\vec{v}} & \langle \nu_{e} | \nu_{x} \rangle_{E,\vec{v}} \\ \langle \nu_{x} | \nu_{e} \rangle_{E,\vec{v}} & \langle \nu_{x} | \nu_{x} \rangle_{E,\vec{v}} \end{pmatrix} = \frac{Tr\left(\hat{\rho}_{E,\vec{v}}\right)}{2} \mathbb{I}_{2\times2} + \frac{g_{E,\vec{v}}}{2} \vec{S}_{E,\vec{v}} \cdot \sigma \\ \hat{H}_{E,\vec{v}} &= \frac{Tr\left(\hat{H}_{E,\vec{v}}\right)}{2} \mathbb{I}_{2\times2} + \frac{1}{2} \vec{H}_{E,\vec{v}} \cdot \sigma \\ \begin{pmatrix} \partial_{t} + \vec{v}.\vec{\nabla} \end{pmatrix} \mathbf{S}_{\vec{v}} &= \mu_{0} \int d^{3} v' G_{\vec{v}'} \left(1 - \vec{v} \cdot \vec{v}\right) \mathbf{S}_{\vec{v}'} \times \mathbf{S}_{\vec{v}} \\ \begin{pmatrix} \partial_{t} + \vec{v}.\vec{\nabla} \end{pmatrix} \hat{\rho}_{E,\vec{v}} &= \hat{H}_{E,\vec{v}} \hat{\rho}_{E,\vec{v}} - \hat{\rho}_{E,\vec{v}} \hat{H}_{E,\vec{v}} & & \begin{pmatrix} \partial_{t} + \vec{v}.\vec{\nabla} \end{pmatrix} \mathbf{S}_{\omega,\vec{v}} &= \left(\mathbf{H}_{\omega}^{\text{vac}} + \mathbf{H}^{\text{mat}} + \mathbf{H}_{\vec{v}}^{\text{self}}\right) \times \mathbf{S}_{\omega,\vec{v}} \\ \mathbf{H}^{\text{mat}} &= \sqrt{2} \mathcal{O}_{E} \left(n_{e^{-}} - n_{e^{+}}\right) \left(0, 0, 1\right) & \mathbf{H}_{\omega}^{\text{vac}} &= \mathcal{O} \left(\sin 2\vartheta, 0, \cos 2\vartheta\right) \\ \mathbf{H}_{\vec{v}}^{\text{self}} &= \int d^{3} \vec{p}_{\omega',\vec{v}'}' / (2\pi)^{3} g_{\omega',\vec{v}'} \left(1 - \vec{v} \cdot \vec{v}'\right) \mathbf{S}_{\omega',\vec{v}'} & \mathbf{S}_{\vec{v}'} \\ \mathbf{S}_{\vec{v}} \\ &= \mathbf{S}_{\vec{v}} \\ \end{bmatrix} : \text{Flavor conversion} \\ \mathbf{S}_{\vec{v}}^{\parallel} : \text{Total Flavor content} \end{aligned}$$

Difficulties and Challenges :

What are the challenges ?	What did we do ?
Huge Phase space dimensionality 3 sp. + 3 mom. + 1 time = 7 dim	Partially resolved 2 sp. + 2 mom. + 1 time = 5 dim.
Large set of coupled nonlinear P.D.E's	Developed : a) Analytical techniques b) Numerical code
Lack of numerical techniques to give accurate and precise result in the nonlinear regime	Developed our own code that gives accurate and precise answer even in the nonlinear regime
Lack of analytical development / theory beyond the linear regime (Linear stability) which can predict the final outcome	Developed our own theory that can predict how, when and to what extent fast conversion can happen.

OUR NUMERICAL RECIPE :

RESULTS : Irreversibility

Model :

Initial Cond :

1Time + 1 Sp. + 1 Mom.

$$\begin{aligned} \mathbf{S}_{v}^{\parallel} |^{\mathrm{ini}} &= +1 \\ \mathbf{S}_{v}^{\perp} |^{\mathrm{ini}} &= 10^{-6} \delta\left(z\right) \end{aligned}$$

Irreversible and steady state behaviour in timelength shrinks

Bhattacharyya, Dasgupta (2020) arXiv : 2005.00459

RESULTS : Multipole Diffusion

• In terms of multipole moments, $M_n = \int_{-1}^{+1} dv G_v L_n S_v$ and considering n as continuum we get :

 $\partial_t \mathsf{M}_n - \mathsf{M}_0 \times \mathsf{M}_n = \partial_z \left(\mathsf{M}_n + \partial_n \mathsf{M}_n / (2n+1) + \partial_n^2 \mathsf{M}_n / 2 \right) - \mathsf{M}_1 \times \left(\mathsf{M}_n + \partial_n \mathsf{M}_n / (2n+1) + \partial_n^2 \mathsf{M}_n / 2 \right)$

- Further coarse graining over z , and using $2n+1 \approx 2n$

 $egin{aligned} \partial_t \langle M_n
angle &= rac{\langle M_1
angle}{2} \left(\partial_n^2 \langle M_n
angle + rac{1}{n} \partial_n \langle M_n
angle
ight) \end{aligned}$

Diffusion in multipole space

• The above equation remains same under $n \to an$, $t \to a^2 t \longrightarrow \langle M_n(t) \rangle = f\left(\frac{n^2}{t}\right) = f(\xi)$

$$2rac{d^2}{d\xi^2}f(\xi) + (1/\langle M_1
angle + 2/\xi)rac{d}{d\xi}f(\xi) = 0$$

$$\langle M_n(t)
angle = c_1 \operatorname{Ei} \left[- n^2 / \left(2 \langle M_1
angle t
ight)
ight] + c_2$$

RESULTS : Multipole Diffusion

Power flow in multipole space from low to high n values and coarse-graining causes irreversibility in time and also shrinking in the length for high n multipole moments

RESULTS : Transverse Relaxation

-0.5

15

15

 $\langle H_v^\|
angle$

 $\langle H_{v}^{\perp}$

- Modes for which $|H_v^{\perp}| \approx |H_v^{\parallel}|$, S_v crosses the transverse plane and gets depolarized
- Amount depends on lepton asymmetry and choice of v

RESULTS : Flavor Depolarization

Depolarization factor :

$$f_{v}^{\mathrm{D}} = rac{1}{2} ig(1 - \langle \mathsf{S}_{v}
angle^{\mathrm{fin}} / \langle \mathsf{S}_{v}
angle^{\mathrm{ini}} ig)$$

Multipole expansion upto linear order :

$$G_v \mathsf{S}_v^{\parallel}|_{fin} = \frac{\mathsf{M}_0^{fin}}{2} + \frac{3v\mathsf{M}_1^{fin}}{2} + O(v^2)$$

Lepton number conservation :

$$\left< \mathsf{M}_{0}^{ini} \right> = \left< \mathsf{M}_{0}^{fin} \right> = A \quad \left< \mathsf{M}_{1}^{fin} \right> = \frac{A}{2}$$

$$f_{v}^{\mathbf{D}} \approx \mathbf{0.5, if } v < \mathbf{0}$$

$$f_{v}^{\mathbf{D}} \approx \frac{1}{2} - \frac{A}{4} - \frac{3A}{8} v, if v > \mathbf{0}$$

CONCLUSION

- We have presented an *analytical theory* of fast neutrino flavor conversions in the *nonlinear regime*.
- We showed fast conversions can bring different neutrino flavors *close to each other* (Flavor Depolarization) and *irreversibility* in the system.
- **T2 relaxation** and **multipole diffusion** governs such behaviour.
- We gave a strategy and a formula for computing the *extent of flavor depolarization*

Phenomenological Consequences :

- Flavor depolarization can cause significant increse in *neutrino heating rate* and *change the explosion scenario*.
- Including MSW conversions, propagation and eartheffects our formula will allow one to determine the *final neutrino signal from a SN explosion*

$$F^{\mathrm{fin}}_{\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,e}},\,\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,\mu}}}[ec{p}\,] = (1-f^{\mathrm{D}}_{ec{p}})F^{\mathrm{ini}}_{\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,e}},\,\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,\mu}}}[ec{p}\,] + f^{\mathrm{D}}_{ec{p}}F^{\mathrm{ini}}_{\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,\mu}},\,\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,e}}}[ec{p}\,]$$

- This signal can be the first ever direct probe of testing the *neutrino-neutrino self-interaction*.
- The final output of fast conversions can have implications even in the *nucleosynthesis of elements*, astrophysics of *binary neutron star mergers*, *diffuse SN background* and can be detected in future experiments.