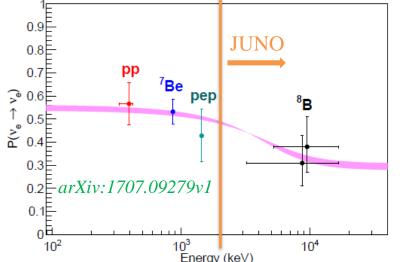


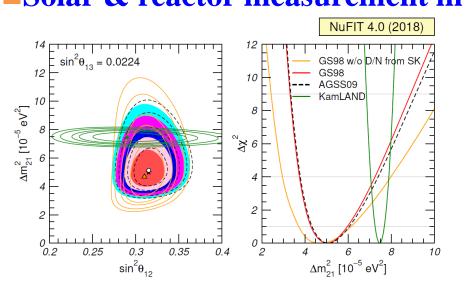
Feasibility and physics potential of detecting ⁸**B solar neutrinos at JUNO**

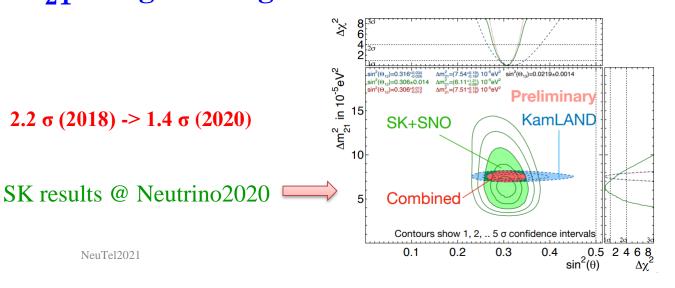

Jie Zhao

Institute of High Energy Physics On behalf of the JUNO collaboration 2021-2-24 @ NeuTel2021

Physics potentials for low threshold ⁸B neutrinos @JUNO

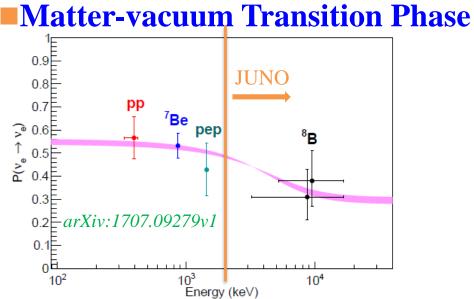
Matter-vacuum Transition Phase (E > 2 MeV)



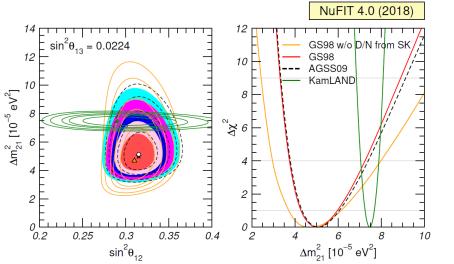

JUNO detector

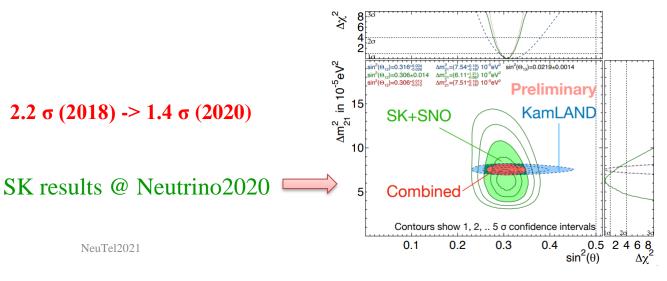
- 20 kt LS, $3\%/\sqrt{E}$ energy resolution
- ✓ Afford excellent self-shielding
- Comparable statistics to Super-K
- ✓ Expected 2 MeV detection threshold

Solar & reactor measurement in Δm^2_{21} using one single detector


NeuTel2021

Physics potentials for low threshold ⁸B neutrinos @JUNO

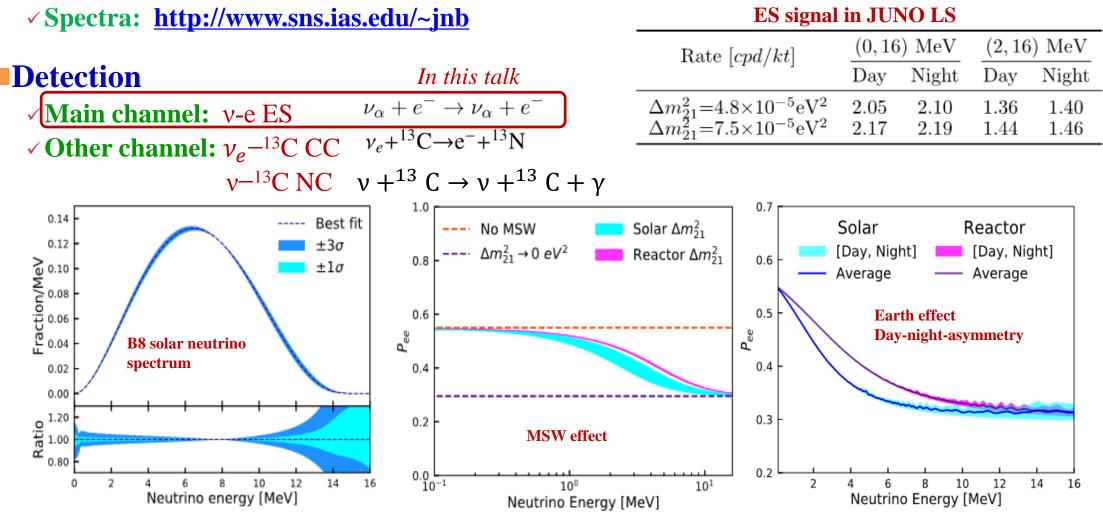

Two main observables:


✓ ES channel (ν +e → ν +e): $E_{vis} > 2 \text{ MeV}$ ✓ Day-night asymmetry

Challenge: Cosmogenic & Radioactivity

LS radioactivity: 10⁻¹⁷ g/g (solar phase)
Optimized fiducial volume
Better muon veto approach

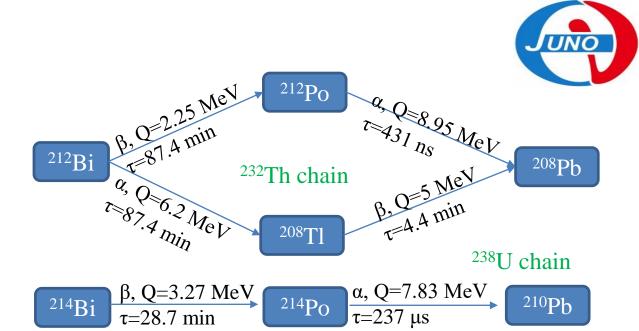
Solar & reactor measurement in Δm^2_{21} using one single detector

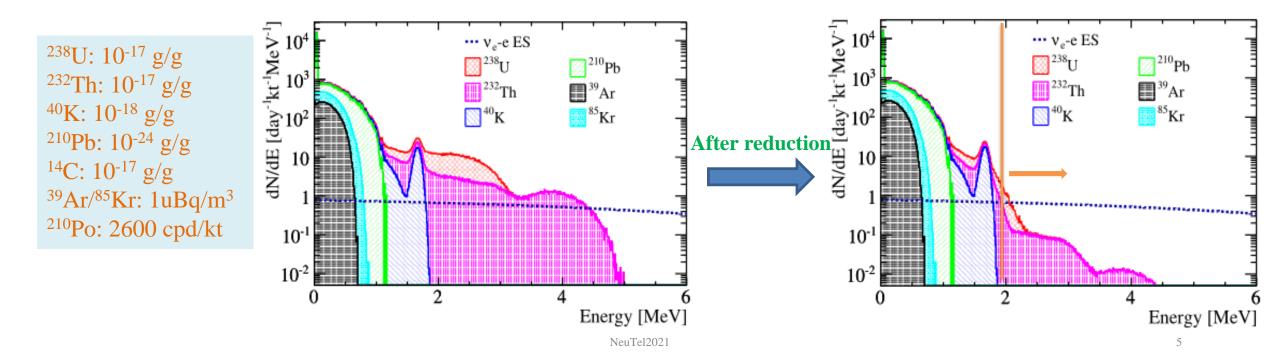


Prediction

Neutrino flux and spectrum

✓ Flux: $(5.25 \pm 0.20) \times 10^6$ /cm²/s from SNO NC measurement (*Phys.Rev.C* 88 (2013) 025501)

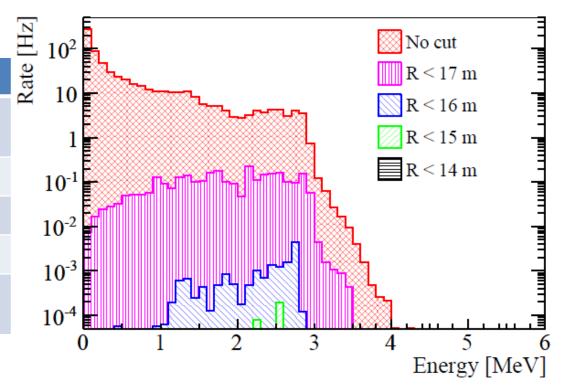



Internal background

2 MeV threshold achievable

✓ ²¹⁰Bi, ⁴⁰K are not easy to be removed.
 ✓ Alpha energy after quenching is < 2 MeV
 ✓ ²¹⁴Bi, ²¹²Bi and ²⁰⁸Tl decays can be removed by cascade decays.

• Well discrimination on α/β with PMT shape information



External radioactivity

External radioactivity

Main materials	Measurement (U/Th)	Information
Acrylic	< 1 ppt	Measured by NAA (LRT2019) and ICP-MS (arXiv2011.06817)
Stainless steel	< 1 ppb	Same supplier with Daya Bay
PMT glass	~200 ppb	Ref: NIMA 898 (2018) 67–71
Water	$Radon < 0.1 \ Bq/m^3$	Ref: RDTM (2018) 2:48
Rock	10~30 ppm	4 m water and 5 mm HDPE shielding, negligible

External neutron captures

- ✓ High energy gamma: neutron captures on iron, PMT glass and acrylic
- ✓ **Residual**: < 0.001 cpd with R < 16.5 m

Final optimized fiducial volume cut

	R < 16.5 m	R < 15 m	R < 13 m
Energy (MeV)	> 5	(3, 5)	(2, 3)
Target mass (kt)	16.2	12.2	7.9

✓ With about 5 m self-shielding, ²⁰⁸Tl decays from external materials are negligible.

15

Distance[m]

Energy [MeV]

 $^{11}C(\tau=29min)$

 $10^{10}C(\tau=28s)$

 $IIII ¹¹Be(\tau=20s)$

••• v_e-e ES

2

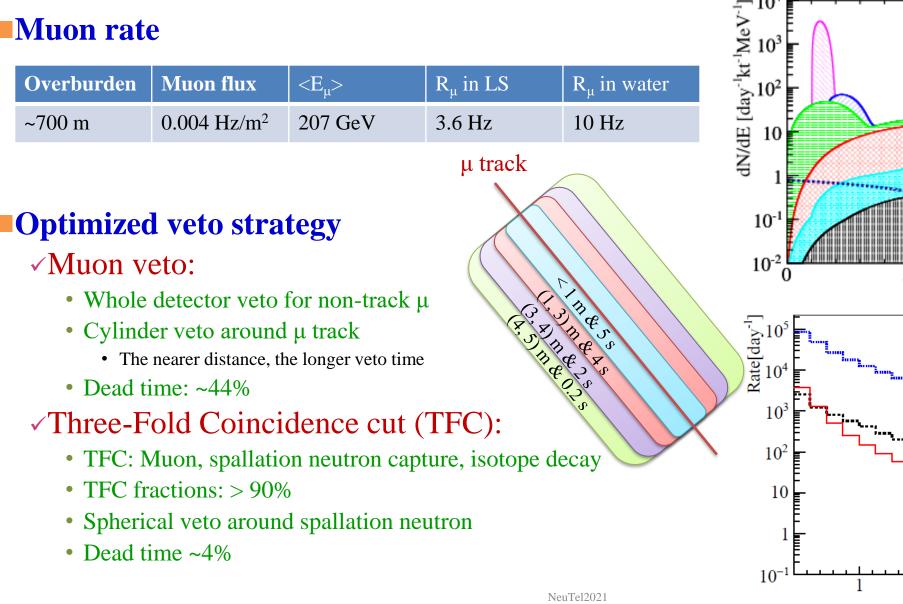
3

 $1^{12}B(\tau=29ms)$

⁹Li,⁹C(τ~200ms)

10

······ Distance to u

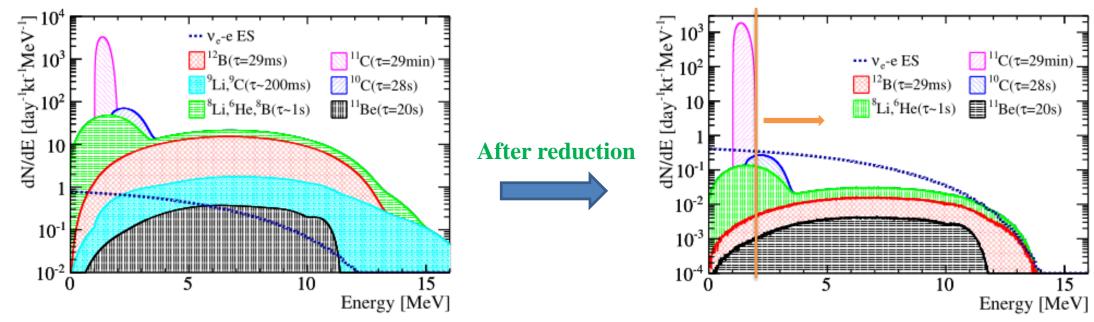

Distance to n

---- Distance from n to μ

⁸Li,⁶He,⁸B(τ ~1s)

Long-lived cosmogenic isotopes

Muon rate



Long-lived cosmogenic isotopes

Spectrum

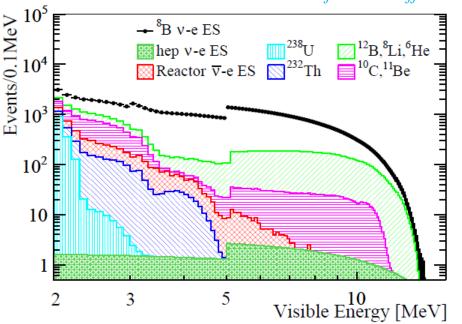
Yield in LS is scaled from measurement by Borexino and KamLAND

Systematics	Systematic uncertainty	12 B	⁸ Li	$^{6}\mathrm{He}$	¹⁰ C	$^{11}\mathrm{Be}$
	livetime (τ)	$29.1 \mathrm{ms}$	$1.21 \mathrm{~s}$	1.16s	$27.8~{\rm s}$	19.9s
	KamLAND [47]		3.3%			10.8%
	JUNO	1%	$1{\sim}3\%$	$1{\sim}3\%$	$5{\sim}10\%$	$5{\sim}10\%$

✓ The actual isotope yields, distance distributions, and TFC fractions will be measured *in-situ* in future.

Summary of background and signal

⁸B signal efficiency


- ✓ Muon veto efficiency: 52%
- ✓ (3, 5) MeV: 52% (muon veto) * 80% (²¹²Bi-²⁰⁸Tl cut)

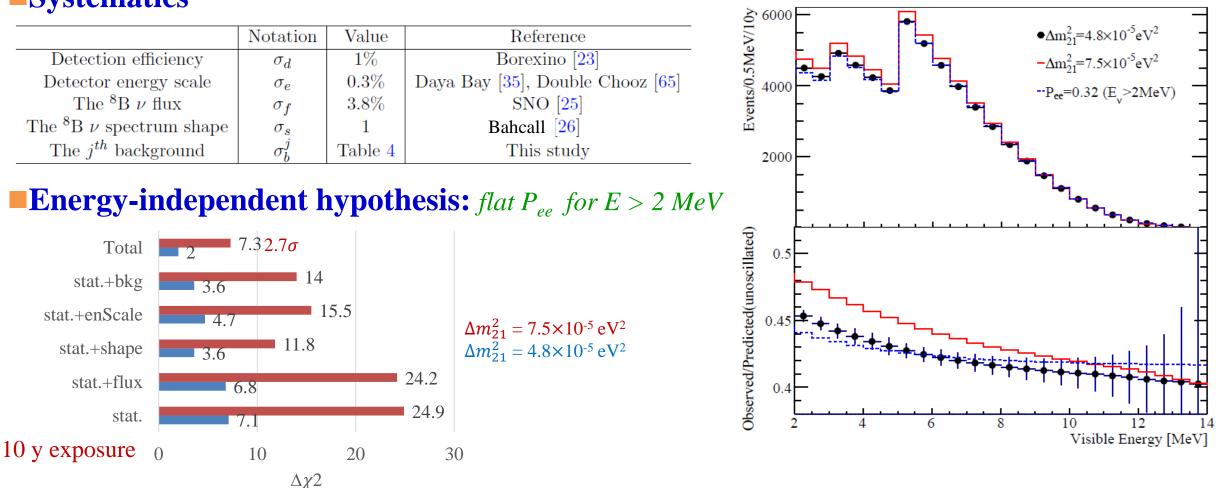
Other systematics

- ✓ FV cut: 1%, refer to Borexino
- (Phys. Rev. D, 101(6):062001, 2020).
- ✓ Detector energy scale: 0.3%, refer to Daya Bay

(Nucl. Instrum. Meth. A, 940:230-242, 2019.)

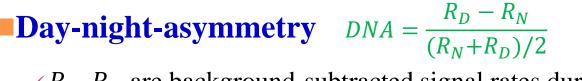
The discontinuities at 3 MeV and 5 MeV come from the different FV cut.

$\Delta m_{21}^{2\star}$	$= 4.8 \times 10^{-1}$	$^{-5} eV^2$, a	nd Δm_2^2	$_{21}^{2\dagger} = 7.5$	$\times 10^{-5}$	eV^2


cpd/kt	\mathbf{FV}	⁸ B signal eff.	$^{12}\mathrm{B}$	⁸ Li	$^{10}\mathrm{C}$	$^{6}\mathrm{He}$	$^{11}\mathrm{Be}$	$^{238}\mathrm{U}$	$^{232}\mathrm{Th}$	$\overline{\nu}$ -e ES	Total bkg.	Signal $\Delta m_{21}^{2\star}$	rate at $\Delta m_{21}^{2\dagger}$
(2, 3) MeV	7.9 kt	~51%	0.005	0.006	0.141	0.084	0.002	0.050	0.050	0.049	0.39	0.32	$\frac{\Delta m_{21}}{0.30}$
(3, 5) MeV	12.2 kt	~41%	0.013	0.018	0.014	0.008	0.005	0	0.012	0.016	0.09	0.42	0.39
(5, 16) MeV	16.2 kt	$\sim 52\%$	0.065	0.085	0	0	0.023	0	0	0.002	0.17	0.61	0.59
Syst. error	1%	<1%	3%	10%	3%	10%	1%	1%	2%				

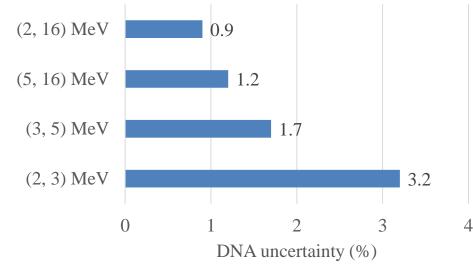
Background after reduction, and muon veto efficiency corrected.

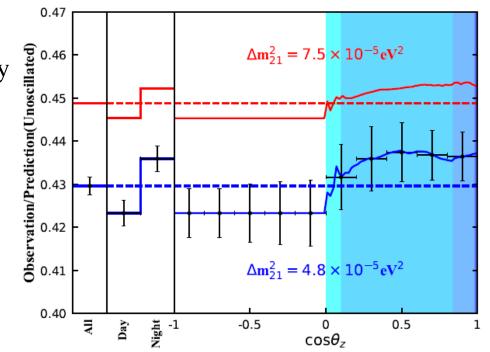
Spectrum distortion test


Systematics

• This hypothesis is rejected at 2.7 σ with large Δm_{21}^2 , and the statistic-only sensitivity can reach 5 σ .

Sensitivity on Day-Night-Asymmetry

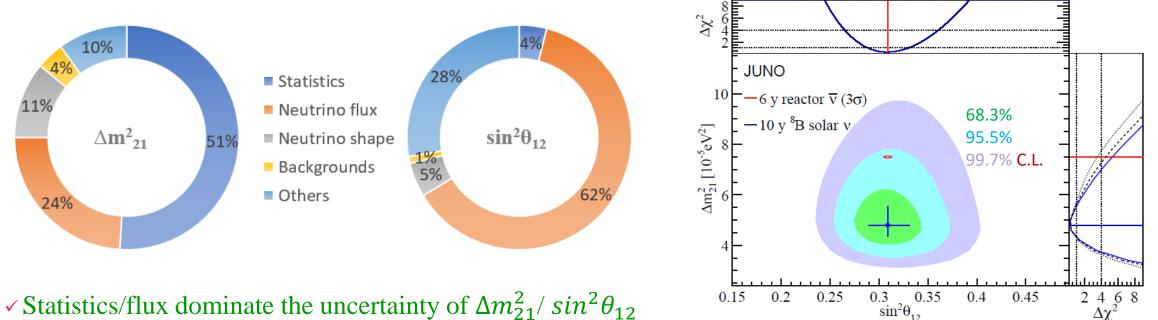




✓ R_N , R_D are background-subtracted signal rates during the Day (cos θ_z < 0) and Night (cos θ_z > 0)

Sensitivity (10 years data)

✓ Most systematics are cancelled, statistics dominate


Day/Night asymmetry: Super-K results @ Neutrino2020 $A_{DN}^{Fit} = (-3.6 \pm 1.6(stat) \pm 0.6(syst)) \% \rightarrow A_{DN}^{Fit} = (-2.1 \pm 1.1) \%$

✓ JUNO will reach SK 20y uncertainty (1.1%) in less than ten years due to the better S/B ratio.

Measurement of oscillation parameters

χ^2 fitting with both energy and sun-detector angle

 \checkmark the discrimination on Δm_{21}^2 from 4.8×10⁻⁵ eV² to 7.5×10⁻⁵ eV² can reach 2σ .

Discussion on worse conditions

✓ ²¹⁰Po reach Phase I of Borexino (10⁴ cpd/kt), ²⁰⁸Tl could not be reduced. Dashed line in the right panel ✓ ²³⁸U/²³²Th ~ 10⁻¹⁵ g/g, $E_{vis} > 5$ MeV. Dotted line in the right panel

Summary of this study

Detailed study on background reduction

- ✓ Internal radioactivity: Bi-Po, Bi-Tl cascade decay
- External radioactivity: optimized FV for different energy region
- Muon veto strategy: muon track & TFC

Physics potential of detecting ⁸B solar neutrinos at JUNO (10 years data)

- \checkmark Signal 60,000, background 30,000, <u>E_{th} ~ 2 MeV</u>
- ✓ The elimination of flat P_{ee} : $\geq 2\sigma$ for the large Δm_{21}^2 (7.5×10⁻⁵ eV²)
- ✓ Day-Night-Asy: <u>0.9%</u>, better than Super-K's latest result 1.1%
- \checkmark Solar & reactor measurement in Δm^2_{21} with one single detector
 - the discrimination on Δm_{21}^2 from 4.8×10⁻⁵ eV² to 7.5×10⁻⁵ eV² can reach 2σ .
- ✓ Collaboration paper published at CPC Vol. 45, No.2 (2021)

Thanks for your attention!

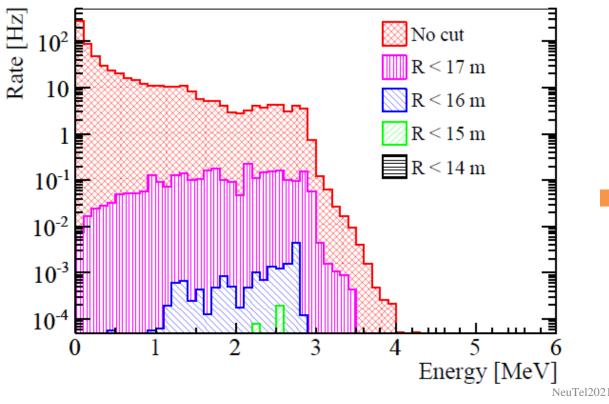
Internal background

Strategy for Background reduction

✓ With correlation cuts (time, position, energy) most of ²¹⁴Bi, ²¹²Bi and ²⁰⁸Tl decays can be removed

	²¹⁴ Bi- ²¹⁴ Po- ²¹⁰ Pb	²¹² Bi- ²¹² Po- ²⁰⁸ Pb	²¹² Bi- ²⁰⁸ Tl- ²⁰⁸ Pb	
Prompt signal	Beta (2, 3.5) MeV	Beta (2, 3.5) MeV	Alpha (0.5, 0.7) MeV] \
Delayed signal	Alpha (0.85, 1.05) MeV	Alpha (0.85, 1.05) MeV	Beta (3, 5) MeV	ſ
Time & position correlation	2 ms & 2 m	5 µs & 2 m	22 min & 1 m	

Isotopes in the ²³⁸U and ²³²Th decay chains with decay energies larger than 2 MeV


Isotope	Decay mode	Decay energy	τ	Daughter	Daughter's τ	Removal eff.	Removed signal
^{214}Bi	β^{-}	$3.27 { m MeV}$	28.7 min	²¹⁴ Po	$237 \ \mu s$	>99.5%	<1%
²¹² Bi	$\beta^{-}: 64\%$	$2.25 { m MeV}$	87.4 min	²¹² Po	431 ns	93%	~ 0
^{212}Bi	lpha:~36%	$6.21 { m MeV}$	87.4 min	208 Tl	4.4 min	N/A	N/A
208 Tl	β^{-}	$5.00 { m MeV}$	$4.4 \min$	^{208}Pb	Stable	99%	20%
234 Pa ^m	β^{-}	$2.27 { m MeV}$	$1.7 \min$	^{234}U	245500 years	N/A	N/A
^{228}Ac	β^{-}	$2.13 { m ~MeV}$	$8.9~\mathrm{h}$	228 Th	1.9 years	N/A	N/A

External radioactivity and neutron captures

External radioactivity

- Simulation is done with JUNO offline software
- Contribution from rock is negligible with at least
 4 m water and 5 mm HDPE liner shielding
- ✓ Effectively removed by the fiducial volume (FV) cut

External neutron captures

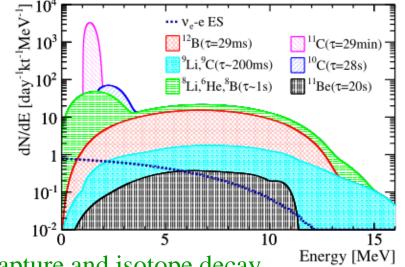
 High energy gamma: neutron captures on iron, PMT glass and acrylic

Unit: cpd	R<17.7 m $$	R<17 m $$	R<16 m $$	R<15 m $$	R<14 m $$
Acrylic	1.3e-5	1.53e-7	2.7e-9	5.57e-11	0
Node	3.52e-5	8.9e-7	5.1e-8	4.1e-9	4.3e-10
Bar	9.8e-5	2.6e-6	1.8e-7	1.2e-8	2.7e-9
PMT glass	2.5e-2	1.8e-4	7.2e-6	0	0
Total	0.025	1.9e-4	7.5e-6	1.6e-8	3.1e-9

PMT glass dominates the contribution, but can be effectively remove with R < 16.5 m FV cut </p>

Final optimized fiducial volume cut

	R < 16.5 m	R < 15 m	R < 13 m
Energy (MeV)	> 5	(3, 5)	(2, 3)
Target mass (kt)	16.2	12.2	7.9


Long-lived cosmogenic isotopes

Muon rate

✓ With ~700 m overburden, muon flux is 0.004 Hz/m² with an average energy of 207 GeV.

✓ About 3.6/10 Hz muons passing through the LS/water

JUNO

Vield

✓ Three-Fold Coincidence cut (TFC) among muon, spallation neutron capture and isotope decay Used in this study

						✓
Isotope	Decay mode	Decay energy (MeV)	au	Yield in LS (/d Geant4 simulation	ay) Scaled	TFC fraction
$^{12}\mathrm{B}$	β^{-}	13.4	29.1 ms	1059	2282	90%
⁹ Li	β^- : 50%	13.6	257.2 ms	68	117	96%
${}^{9}C$	β^+	16.5	182.5 ms	21	160	>99%
⁸ Li	$\beta^- + \alpha$	16.0	1.21 s	725	649	94%
$^{6}\mathrm{He}$	β^{-}	3.5	1.16 s	526	2185	95%
$^{8}\mathrm{B}$	$\beta^+ + \alpha$	~18	1.11 s	35	447	>99%
^{10}C	β^+	3.6	27.8 s	816	878	>99%
^{11}Be	β^{-}	11.5	19.9 s	9	59	96%
^{11}C	β^+	1.98	29.4 min	11811	46065	98%
				0 1 1 1 0		(1 D '

Scaled: scale from measurement by Borexino and KamLAND

Long-lived cosmogenic isotopes

Optimized veto strategy

	For reconstructed track	Strategy	Dead time
Whole detector veto	w/ track	Veto 2 ms	44%
	w/o track	track Veto 1 s	
Cylindrical volume veto (<i>d</i> : distance between candidate to muon track)	w/ track	Veto d < 1 m for 5 s Veto 1 m < d < 3 m for 4 s Veto 3 m < d < 4 m for 2 s Veto 4 m < d < 5 m for 0.2 s	
TFC veto		Veto 2 m spherical volume around neutron for 160 s	4%

μ track

Differential cross section of v_e and $v_{\mu\tau}$

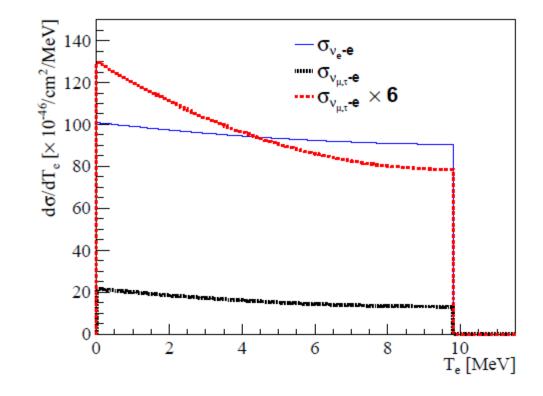


Figure 4: Differential cross section of $\nu_e - e$ (blue) and $\nu_{\mu,\tau} - e$ (black) elastic scattering for a 10 MeV neutrino. The stronger energy dependence of the $\nu_{\mu,\tau} - e$ cross section, as illustrated in red, produces another smooth upturn in the visible electron spectrum compared to the case of no $\nu_{\mu,\tau}$ appearance.