ESSνSB progress on the design of the near and far neutrino detectors and the simulation of the physics potential

Mariyan Bogomilov
Faculty of Physics, Sofia University St. Kliment Ohridski
on behalf of ESSνSB Project

email: marian@phys.uni-sofia.bg

XIX International Workshop on Neutrino Telescopes
February 2021
Why ESSνSB?

ESSνSB = European design study* for an experiment to measure CP violation at 2nd neutrino oscillation maximum.

\[
\frac{(P_{\mu \rightarrow e} - P_{\mu \rightarrow \bar{e}})}{(P_{\mu \rightarrow e} - P_{\mu \rightarrow \bar{e}})} \text{ @ 2nd osc. max.} \sim 3
\]

➢ 3x signal at 2nd osc. maximum is less obscured by systematics

➢ But less statistics because:
 • move further than 1st maximum
 • the smaller the energy -> the smaller the cross section

➢ Intense beam on target -> intense neutrino flux

* A Horizon 2020 EU Design Study Project: grant agreement No 777419; start: 2018, end: 2022
Accelerator, accumulator, target and Near Detector site

- ESS proton linac near Lund, Sweden
 - Increase proton kinetic energy to 2.5 GeV
 - Double the linac rate (14 Hz → 28 Hz)

- ESS proton pulse is too long - accumulator ring (C~400 m) needed to compress proton pulses to ~ 1.3 μs, otherwise:
 - magnetic horns would melt
 - atmospheric neutrino background would be too large for CP violation measurement

- Neutrino optimised target station
 - 4 targets made of titanium spheres

- Underground near detector hall
 - Located ~250 m from the target
Far Detector site

- **Baseline:**
 - Garpenberg mine, 540 km from the neutrino source
 - corresponding to 2nd oscillation maximum
 - depth 1200 m

- **Alternative:**
 - Zinkgruvan mine, 340 km from source
 - depth 1500 m
Aim of detectors

➢ Near detectors
 • Constrain the prompt neutrino flux
 • Measure neutrino interaction cross-sections (both inclusive and exclusive)

➢ Far detectors
 • Observe $\bar{\nu}_e$ appearance in the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillation channel
Neutrino energy distributions (without optimisation)

at 100 km from the target and per year (in absence of oscillations)

Near Detectors
Near detectors

• Main purposes:
 • Constrain the prompt neutrino flux
 • Measure neutrino interaction cross-sections (both inclusive and exclusive)

➢ A water Cherenkov detector

➢ A magnetized fine-grained tracker (SFGD)

➢ NINJA-like emulsion detector:
 • water target mass of about 1 ton
 • 130 Emulsion Cloud Chambers (ECC)
Near Water Cherenkov detector

Water Cherenkov detector is used for:
- event rate measurement
- flux normalization
- event reconstruction comparison with the far detector.

➢ Some figures:
- radius $R = 7$ m, length $L = 11$ m
- 1725 m^3 total volume
- $\sim 1000 \text{ m}^3$ fiducial volume
- Readout: 40% PMT coverage
Interaction rates in Near Water Cherenkov

Neutrino mode

Antineutrino mode

Expected number of interactions at 250 m in 500 t of water for 2.16×10^{23} p.o.t. (effective year):

<table>
<thead>
<tr>
<th>Neutrino</th>
<th>Expected number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ</td>
<td>27.5 M</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>66 k</td>
</tr>
<tr>
<td>ν_e</td>
<td>150 k</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neutrino</th>
<th>Expected number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ</td>
<td>265 k</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>4.7 M</td>
</tr>
<tr>
<td>ν_e</td>
<td>1.8 k</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>15 k</td>
</tr>
</tbody>
</table>
Near Water Cherenkov performance

Charged lepton energy reconstruction
Fiducial cut - 2m

Charged lepton identification
Fiducial cut - 2m
Super Fine-Grained Tracker (SFGD)

SFGD detector is used for measurements of neutrino cross-sections in energy region (60–600 MeV).

- Some figures:
 - scintillating cubes 1x1x1 cm3
 - WLS fibers in three dimensions
 - overall dimensions 1.4x1.4x0.5 m3
 - Dipole magnetic field up to 1 T
 - Readout MPPCs

SFGD prototype tested at CERN 2018
Super Fine-Grained Tracker performance

➢ Separation ν_e / ν_μ CC events with machine learning methods (TMVA):
 • signal efficiency of 95.5%
 • signal purity of 99.8%

➢ Neutrino energy reconstruction for ν_μ (left) and ν_e (right) with machine learning methods (TMVA):
 • resolution in both cases in the order of 25 MeV
 • assuming true charged lepton momentum
Emulsion detector NINJA-like

- **Usage in ESSnuSB**
 - Study of neutrino interaction topology
 - Measurement of interaction cross-section

- **Advantages of the emulsion detector**
 - Can reconstruct all charged particle tracks with high precision
 - Can detect gammas via conversion
 - Good electron/muon/hadron discrimination

- **Disadvantages of the emulsion detectors**
 - No timing information
 - But can be restored by connecting tracks with SFGD
 - Price per mass
 - No online event reconstruction
 - Labour intensive

![Water target emulsion detector](image1)

Possible configuration in ESSnuSB

Courtesy T. Fukuda
Cross-section measurements

➢ Main problem:
 • Event rate (what we measure) is proportional to (flux) x (cross-section).
 • So, we need one to measure the other, if using event rate as observable.

➢ Strategies:
 • Use elastic scattering of neutrinos on electrons (known cross-section) to constrain the flux
 • measured in the Near WC detector
 • neutrino cross-section scales with target mass:
 - having electron as a target, the cross-section is much smaller than having nucleon as a target
 • Event selection:
 - ν - e scattering has a very forward single electron in the final state.

• Having constraint on the flux, we can measure interaction cross-sections in all Near Detectors:
 • WCKov, Super FGD, emulsion
Far Detector
Far Detectors

Main purpose: observe ν_e appearance in the $\nu_\mu \rightarrow \nu_e$ oscillation channel

- Two identical water Cherenkov detectors.
- Each module is a standing cylinder:
 - diameter $D = 78$ m, height $h = 78$ m
 - $373k$ m3 total volume
 - $270k$ m3 fiducial volume (~10xSuperK)
 - Readout: 38k 20” PMTs
 - 30% optical coverage

- Can also be used for other purposes:
 - Proton decay
 - Astroparticles
 - Galactic SN ν
 - Supernovae "relics"
 - Solar Neutrinos
 - Atmospheric Neutrinos
Interaction rates in Far Detectors

Neutrino mode

Antineutrino mode

Expected number of interactions at 540 km in 540 kt of water for 2.16×10^{23} p.o.t. (effective year), assuming $\delta_{CP} = 0$:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Expected number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_\mu \rightarrow \nu_e$</td>
<td>200</td>
</tr>
<tr>
<td>$\nu_\mu \rightarrow \nu_\mu$</td>
<td>3600</td>
</tr>
<tr>
<td>$\nu_e \rightarrow \nu_e$</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>Expected number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$</td>
<td>40</td>
</tr>
<tr>
<td>$\bar{\nu}\mu \rightarrow \bar{\nu}\mu$</td>
<td>600</td>
</tr>
<tr>
<td>$\bar{\nu}_e \rightarrow \bar{\nu}_e$</td>
<td>3</td>
</tr>
</tbody>
</table>
Neutrino energy reconstruction

Kinematical neutrino energy reconstruction formula

\[E_{\nu}^{\text{rec}} = \frac{m_f^2 - (m_f')^2 - m_i^2 + 2m_i'E_l}{2(m_i' - E_l + p_l \cos \theta_l)} \]

where \(E_{\nu}^{\text{rec}} \) is the reconstructed neutrino energy, \(m_i \) and \(m_f \) are the initial and final nucleon masses respectively, and \(m_i' = m_i - E_b \), where \(E_b = 27 \text{ MeV} \) is the binding energy of a nucleon inside \(^{16}\text{O}\) nuclei. \(E_l, p_l \) and \(\theta_l \) are the reconstructed lepton energy, momentum, and angle with respect to the beam, respectively. The selec-

Given that you know:
- momentum of the outgoing charged lepton
- its angle w.r.t. incoming neutrino
- that it is a quasielastic interaction
- which nucleus neutrino interacted with \((^{16}\text{O})\)

you can approximately calculate neutrino energy.

Intrinsic uncertainties come from nuclear effects, most notably Fermi motion of nucleons in nuclei.

From: Phys. Rev. D 96, 092006
Neutrino energy resolution

- Quasi-elastic scattering.
- Fiducial volume cut – 2 m from walls.

Neutrino energy resolution: 140 MeV for neutrinos and 100 MeV for antineutrinos.
Conclusions

➢ The Project ESSnuSB:
 • aims to observe CP violation in neutrino oscillations at the 2nd oscillation maximum using 500 kt WC detector
 • large associated detectors have a rich astroparticle physics program.
 • a preparatory phase is needed

➢ The detectors:
 • observe $\bar{\nu}_e$ appearance in the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillation channel
 • constrain the prompt neutrino flux
 • measure neutrino interaction cross-sections (both inclusive and exclusive)