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Why ESSνSB?
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ESSνSB = European design study* for an experiment to measure 
CP violation at 2nd neutrino oscillation maximum.

➢

➢ 3x signal at 2nd osc. maximum is less obscured by systematics

➢ But less statistics because:
• move further than 1st maximum
• the smaller the energy -> the smaller the cross section

➢ Intense beam on target -> intense neutrino flux

*A Horizon 2020 EU Design Study Project: grant agreement No 777419; start: 2018, end: 2022



Accelerator, accumulator, target
and Near Detector site
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➢ ESS proton linac near Lund, Sweden
• Increase proton kinetic energy to 2.5 GeV
• Double the linac rate (14 Hz → 28 Hz)

➢ ESS proton pulse is too long – accumulator
ring (C~400 m) needed to compress proton 
pulses to ~ 1.3 μs, otherwise:
• magnetic horns would melt
• atmospheric neutrino background would be 

too large for CP violation measurement

➢ Neutrino optimised target station
• 4 targets made of titanium spheres

➢ Underground near detector hall
• Located ~250 m from the target



Far Detector site
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➢ Baseline:
• Garpenberg mine, 540 km from the neutrino source 
• corresponding to 2nd oscillation maximum
• depth 1200 m 

➢ Alternative:
• Zinkgruvan mine, 340 km from source
• depth 1500 m 



Aim of detectors
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➢ Near detectors
•Constrain the prompt neutrino flux
•Measure neutrino interaction cross-sections 
(both inclusive and exclusive)

➢ Far detectors
•Observe νe appearance in the νμ → νe oscillation 
channel 

(―) (―) (―)



Neutrino energy distributions
(without optimisation)
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at 100 km from the target 
and per year 
(in absence of oscillations)

(Nucl. Phys. B 885 (2014) 127)



Near Detectors
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Near detectors 
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➢ A water Cherenkov detector

➢ A magnetized fine-grained tracker 
(SFGD)

➢ NINJA-like emulsion detector:
• water target mass of about 1 ton
• 130 Emulsion Cloud Chambers (ECC)

• Main purposes:
• Constrain the prompt neutrino flux
• Measure neutrino interaction cross-sections (both inclusive and exclusive)



Near Water Cherenkov detector 
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Water Cherenkov detector is used for:
• event rate measurement
• flux normalization
• event reconstruction comparison 

with the far detector.

➢ Some figures:
• radius R = 7 m, length L = 11 m
• 1725 m3 total volume
• ~1000 m3 fiducial volume
• Readout: 40% PMT coverage



Interaction rates in Near Water Cherenkov 
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Neutrino mode Antineutrino mode

Expected number of interactions at 250 m in 500 t of water for 2.16 x 1023 p.o.t. (effective year): 

Neutrino Expected number

νμ 27.5 M

νμ 66 k

νe 150 k

νe 300

Neutrino Expected number

νμ 265 k

νμ 4.7 M

νe 1.8 k

νe 15 k



Near Water Cherenkov performance 
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Charged lepton energy reconstruction
Fiducial cut – 2m

µ-

e+e-

µ+

Charged lepton identification
Fiducial cut – 2m

e-
e+

µ- µ+



Super Fine-Grained Tracker (SFGD) 
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SFGD detector is used for measurements of neutrino 
cross-sections in energy region (60–600 MeV).

SFGD MC geometry 

SFGD prototype tested at CERN 2018 

➢ Some figures:
• scintillating cubes 1x1x1 cm3

• WLS fibers in three dimensions
• overall dimensions 1.4x1.4x0.5m3

• Dipole magnetic field up to 1 T
• Readout MPPCs

SFGD 

Magnet 



Super Fine-Grained Tracker performance
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➢ Separation νe/νμ CC events with machine 
learning methods (TMVA):
• signal efficiency of 95,5% 
• signal purity of 99,8% 

➢ Neutrino energy reconstruction for νμ (left) and νe

(right) with machine learning methods (TMVA):
• resolution in both cases in the order of 25 MeV
• assuming true charged lepton momentum

νμ

νe



Emulsion detector NINJA-like 
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➢ Usage in ESSnuSB
• Study of neutrino interaction topology
• Measurement of interaction cross-section

➢ Advantages of the emulsion detector
• Can reconstruct all charged particle 

tracks  with high precision
• Can detect gammas via conversion
• Good electron/muon/hadron discrimination

➢ Disadvantages of the emulsion detectors
• No timing information

• But can be restored by connecting 
tracks with SFGD

• Price per mass
• No online event reconstruction
• Labour intensive

Courtesy T. Fukuda 

Possible configuration in ESSnuSB



Cross-section measurements
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➢ Main problem:
• Event rate (what we measure) is proportional to (flux) x (cross-section).
• So, we need one to measure the other, if using event rate as observable.

➢ Strategies:
• Use elastic scattering of neutrinos on electrons (known cross-section) to constrain 

the flux
• measured in the Near WC detector
• neutrino cross-section scales with target mass:

- having electron as a target, the cross-section is much smaller than having 
nucleon as a target

• Event selection:
- ν - e scattering has a very forward single electron in the final state.

• Having constraint on the flux, we can measure interaction cross-sections in all Near 
Detectors:
• WCkov, Super FGD, emulsion



Far Detector
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Far Detectors
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➢ Two identical water Cherenkov detectors.
➢ Each module is a standing cylinder:

• diameter D = 78 m, height h = 78 m
• 373k m3 total volume
• 270k m3 fiducial volume (~10xSuperK)
• Readout: 38k 20” PMTs
• 30% optical coverage

➢ Can also be used for other purposes:
• Proton decay
• Astroparticles
• Galactic SN ν
• Supernovae "relics"
• Solar Neutrinos
• Atmospheric Neutrinos

Main purpose: observe νe appearance in the νμ → νe oscillation channel
(―) (―) (―)



Interaction rates in Far Detectors 
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Neutrino mode Antineutrino mode

Expected number of interactions at 540 km in 540 kt of water for 2.16 x 1023 p.o.t. (effective year), assuming δCP = 0: 

Channel Expected number

νμ → νe 200

νμ → νμ 3600

νe → νe 30

Channel Expectd number

νμ → νe 40

νμ → νμ 600

νe → νe 3



Neutrino energy reconstruction 
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Kinematical neutrino energy
reconstruction formula

From:  Phys. Rev. D 96, 092006

➢ Given that you know:
• momentum of the outgoing charged lepton
• its angle w.r.t. incoming neutrino
• that it is a quasielastic interaction
• which nucleus neutrino interacted with (16O)

you can approximately calculate neutrino energy.

Intrinsic uncertainties come from nuclear effects, 
most notably Fermi motion of nucleons in nuclei.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.092006


Neutrino energy resolution 
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• Quasi-elastic scattering.
• Fiducial volume cut – 2 m from walls.

Neutrino energy resolution: 140 MeV for neutrinos and 100 MeV for antineutrinos.

Absolute Relative



➢ The Project ESSnuSB:
• aims to observe CP violation in neutrino oscillations at the 2nd

oscillation maximum using 500 kt WC detector
• large associated detectors have a rich astroparticle physics program.
• a preparatory phase is needed

➢ The detectors:
• observe νe appearance in the νμ → νe oscillation channel 
• constrain the prompt neutrino flux
• measure neutrino interaction cross-sections (both inclusive and 

exclusive)

(―)

Conclusions 
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(―)(―)


