A novel technique for the study of pile-up events in cryogenic bolometers

Stefano Dell'Oro, on behalf of the CUPID Collaboration

Dipartimento di Fisica G. Occhialini, Università di Milano-Bicocca

INFN, Sezione di Milano-Bicocca

XIX International Workshop on Neutrino Telescopes

February 18 - 26, 2021 (online)

Pile-up in cryogenic bolometers

- Bolometers are calorimetric particle detectors
 - $\circ~$ operating T \sim tens of mK
 - o energy release in the absorber
 - o conversion to phonons
 - o measurement of temperature variation

- Bolometers are playing and will continue to play a major role in the future searches for neutrinoless double-beta decay $(0\nu\beta\beta)$
 - \circ CUPID: search for 0
 uetaeta of 100 Mo with ${\rm Li_2}^{100}$ MoO $_4$ crystals
 - $\circ~$ mass: 450 kg /~ bkg: $10^{-4}\,{\rm c\,keV^{-1}\,kg^{-1}\,yr^{-1}}~/~T_{1/2} > 10^{27}\,{\rm yr}$
 - The slow time response (rise-time in the range of ms) can cause accidental pile-up of $2\nu\beta\beta$ and/or bkg events in the signal region
 - $\circ~$ a resolving time $\lesssim 1\,\text{ms}$ is required to comply with background target

arXiv:1907.09376 [physics.ins-det]

S. Dell'Oro - NeuTel 2021 2/6

Pile-up study with pulser

- Assessment of pile-up rejection capability of CUPID-like bolometers
- Produce controlled sets pile-up events
 - o use of a programmable waveform generator
 - reliable and reproducible control of time separation and relative energy of individual components
- Inject signals into resistances coupled to crystals
 - Joule heating → thermal signal
 - o readout via NTD sensor
- Benchmark test-run performed @ LNGS (Italy)
 - 3 Li₂MoO₄ crystals inside an 8-crystal array
 to study the performance of CUPID-like crystals

S. Dell'Oro - NeuTel 2021 3/6

Measurement

- Identification of waveform reproducing physics pulses on detectors
 - o detector pulses do NOT resemble original waveform

- \circ Δt between pulses is maintained
- ullet Multiple combinations of Δt / amplitude-ratio (lpha) between pulses
 - o extract pulse parameters (rise/decay time, amplitude, ...)
 - compute average values for each configuration

S. Dell'Oro - NeuTel 2021 4/6

Pile-up identification & rejection

Discrimination power

• Distance of distributions individual vs. pile-up events

$$\circ D \equiv |M_{x,i} - M_{x,R}| / \sqrt{\sigma_{x,i}^2 + \sigma_{x,R}^2}$$

- $\circ~$ computed for each $\Delta t/\alpha$ configuration
- benefit from using multiple variables

- $\circ \epsilon_{rej} = n_{rejected}/n_{total}$
- o combined shape parameters
 - TVL²+TVR² & Delay
- \circ 3 σ -cut on reference non-pile-up distribution
- \circ fit distribution with *erf* for each α configuration

S. Dell'Oro - NeuTel 2021 5/6

Results & Outlook

- ullet We obtain a $\epsilon_{rej}=90\%$ for Δt of about 2 ms (t_{rise} ~ 15 ms)
- The measurement did not allow to push this method to its limits
 - o sub-optimal noise condition due to cryostat instabilities
 - \circ sampling frequency limited minimum resolution to Δt close to 1 ms
- There is room for improvement
 - o improved analysis & measurement
 - support by simulations
- New run is already scheduled
 - higher sampling frequency
 - improved noise conditions

Final goal: assess the impact of pile-up on CUPID

S. Dell'Oro - NeuTel 2021 6/6

