

Detector Performance of the MicroBooNE LArTPC

Marianette Wospakrik, Fermi National Laboratory on behalf of the MicroBooNE Collaboration XIX International Workshop on Neutrino Telescope 24 February 2021

MicroBooNE Physics Goals

MicroBooNE Physics Goals

- Study the MiniBooNE Low Energy Excess
 - Mark Ross-Lonergan, Hanyu Wei, Andrew Mogan
- Precision Cross Sections Measurements on Argon ~O(1GeV)
 - Krishan Mistry, Wenqiang Gu, Marina Reggiani Guzzo
- Beyond Standard Model and Supernovae detection:
 - Pawel Guzowski

Precise calorimetric and topological reconstruction is crucial to reach these physics goals!

∓гспша0

MicroBooNE Detector

- **First operating detector** in Short Baseline Neutrino Program.
- **Longest running** Liquid Argon Time Projection Chamber (LArTPC) detector.
- Located on surface.
- Collecting cosmic and neutrino data since Fall 2015 with good uptime and purity.
- Provide technical experience in the construction, operation, and analysis of a large LArTPC

Detector Details:

- 85 ton active mass
- 3 Wire Read Out (different orientations)
- Light Detection System
- UV Laser System
- Cosmic Ray Tagger (CRT) System

interaction occurs

Digital "Bubble-chamber"-like images with 3D topology and calorimetry information

Chosen technology for the DUNE long-baseline v_e appearance measurement

7 Fermilab

15 2/24/2021 M. Wospakrik | Detector Performance of the MicroBooNE LArTPC

Characterizing Spatial Distortion due to SCE

JINST 15, P07010 & P12037 (2020)

- On-surface LArTPC
 - accumulation of Ar⁺ produced by cosmic rays, distort the electric field significantly.
 - Spatial distortion of drift electron leads to distorted reconstructed tracks/showers.
- Spatial distortions measured using
 - UV laser tracks
 - cosmic ray muon tracks.

Characterizing Electric Field Distortion due to SCE JINST 15, P07010 & P12037 (2020)

- Local electron drift velocity is calculated from the spatial distortion map.
- Local electric field magnitude obtained using relationship between the electric field and the drift velocity, which is a function of the liquid argon temperature.
- Distortion is up to ~ 10% of the nominal Efield (~ 30 V cm⁻¹)

Electron Attenuation and Longitudinal Diffusion

Drift electron lifetime measured using cosmic ray muons crossing anode and cathode.

We are including SCE correction in the current drift electron lifetime calibration

Longitudinal Diffusion

Calibration Technique JINST 15, P03022 (2020)

Pure v-induced proton sample used to correct for **recombination of electron-ion pairs**. Independent reconstruction of **dE/dx** using a rangebased method.

$$\frac{dQ}{dx} = \frac{\ln(\frac{dE}{dx}\frac{\beta'}{\rho\mathscr{E}} + \alpha)}{\frac{\beta'}{\rho\mathscr{E}}W_{\text{ion}}}$$

JINST 15, P03022 (2020)

Assessing Detector Systematics

Hit Charge Run 1 Data vs Simulation Ratio

- Various subtle and correlated effects in the detector response model
- Pioneered a novel method to capture waveform-level data/MC differences in response as a function of:
 - position in x, y, and z
 - angular orientation of particle's trajectory, θ_{xz} and θ_{yz}

as a correction and residual detector modeling systematic

Results are expected to be published soon!

🔁 Fermilab

Summary

- MicroBooNE has been carefully examining LArTPC data for 5 years and publishing detailed detector performance results to be used by new and upcoming LArTPCs, such as DUNE and SBN program
- MicroBooNE is pioneering in several aspects of the LArTPC performance:
 - Data-driven SCE/E-Field maps JINST 15, P07010 & P12037 (2020)
 - Wire field response and signal processing JINST 13, P07006 & P07007 (2018)
 - Data-driven method for assessing detector systematics in MicroBooNE
- Developing the first major campaign of calibration for a big LArTPC JINST 15, P03022 (2020)
 - Use of extensive cosmic ray muons for uniformity and response calibration
 - Use of neutrino-induced protons for recombination corrections
 - Use of Data-driven SCE/E-Field maps to correct dQ/dx and dE/dx.
 - Using dedicated calibration studies to better inform simulation

Office of

Science

Stay tune for our many upcoming results!

Thank you!

Field and Electronic Response Correction

JINST 13, P07006 & P07007 (2018)

- Pioneered simulation of dynamicinduced current (DIC) in a LArTPC and improves data-Monte Carlo (MC) agreement.
- Developed novel techniques for noise filtering and signal processing
- Full implementation of 2D deconvolution of wire signals improves reconstruction performance and detector calibration.

Effective Recombination

	values from ref. [13] [28]	new value
modified box model α	(0.93 ± 0.02)	(0.92 ± 0.02)
modified box model β'	(0.212 ± 0.002)	(0.184 ± 0.002)
(kV/cm)(g/cm ²)/MeV		
Birks' law A_B	(0.800 ± 0.003)	(0.816 ± 0.012)
Birks' law k	(0.0486 ± 0.0006)	(0.045 ± 0.001)
(kV/cm)(g/cm ²)/MeV		

