Hyper-Kamiokande Neutrino Beam Oscillation Sensitivities

Tom Dealtry for the Hyper-Kamiokande collaboration

NuTel2021

24th February, 2021

Towards Hyper-Kamiokande

	Kamiokande	Super-K	Hyper-K
Operation	1983–1995	1996–	2027–
Mass (fiducial)	4.5 (0.68) kton	50 (22.5) kton	258 (187) kton
	Bin		

- Building on decades of expertise
- Fiducial mass increase $> \times 8$
- \bullet Improved PMTs $\sim \times 2$ photo detection efficiency

Event displays

- Electron vs muon particle identification via
 - Fuzzy vs sharp ring
 - Delayed decay (Michel) electrons

Hyper-Kamiokande ν_{μ} & $\overline{\nu}_{\mu}$ beam

295 km

Tom Dealtry (Lancaster University)

Hyper-Kamiokande $\nu/\bar{\nu}$ Beam Oscillation Sensitivities

24th February, 2021 4 / 27

~1 km

Hyper-Kamiokande u_{μ} & $\overline{\nu}_{\mu}$ beam

- 20 times more stats than T2K
 - ▶ J-PARC beam upgraded to 1.3 MW
 - New 188 kt fiducial far detector
- New Intermediate Water Cherenkov Detector (IWCD)
- Upgraded near detector (ND280 upgrade)

Neutrino oscillation physics

- Is there CP violation? Does $\sin \delta_{CP} = 0$?
- Is θ_{23} maximal (= 45°)? If not, which octant (< or > 45°)?
- Which mass hierarchy? $\Delta m_{32}^2 < \text{or} > 0$?

$\nu_e \& \overline{\nu}_e$ appearance probabilities

- Hyper-K ν & $\bar{\nu}$ beam flux peaks ${\sim}0.6\,{\rm GeV}$
- 0 $\delta_{CP} = -90^{\circ} (-\pi/2)$
 - ν_e appearance enhanced; $\overline{\nu}_e$ appearance suppressed
- Unknown mass hierarchy (solid vs dashed) complicates δ_{CP} measurement
 - Sensitivities we show today are for known normal hierarchy
 - Hyper-K can use atmospheric data to exclude incorrect mass hierarchy @ 4–6 σ

Hyper-K neutrino beam analysis method

- Using T2K analysis method
 - Super-K MC scaled to Hyper-K exposure

1-ring μ -like event samples

 $\sim \! 9300 \text{ events}$

@ 10 years (2.7E22 POT), $\nu:\bar{\nu} = 1:3$

 $\sim \! 12300 \text{ events}$

1-ring *e*-like event samples

\sim 2300 events

ν-mode beam HK 10 years (2.7E22 POT 1:3 v.Ÿ) 140 120 120 100 100 0 osc v_e cC NC v_e CC ν_e CC ν_e CC ν_e CC ν_e CC

${\sim}1900 \text{ events}$

0 δ_{CP} =0 0 10 years (2.7E22 POT), $\nu:\bar{\nu} = 1:3$

1-ring *e*-like event samples

Number of Events $v_{\mu}/\overline{v}_{\mu}$ CC 80 60 40 20 \overline{v} beam 0.2 0.4 0.6 v Reconstructed Energy (GeV) 1-ring e-like + 0 decay e HK 10 years (2.7E22 POT 1:3 y:7) 150 Difference from $\delta_{CP} = 0$ (events) $\delta_{CP} = +\pi/2$ 100 • $\delta_{CP} = -\pi/2$ $\delta_{CP} = +\pi$ 50 -100-1500.2 0.6 v beam v Reconstructed Energy (GeV) 1-ring e-like + 0 decay e Hyper-Kamiokande $\nu/\bar{\nu}$ Beam Oscillation Sensitivities 24th February, 2021

 $\bar{\nu}$ -mode beam

14

120

100

HK 10 years (2.7E22 POT 1:3 v:v)

osc v, CC

osc v, CC

NC

v, CC

V. CC

11 / 27

Systematics

- $\bullet\,$ Hyper-K has high statistics \to systematics limited
- Going to show sensitivities
 - ▶ We have a range of systematics scenarios that span the possible values
- T2K 2018 systematics
 - Where we are now
- Improved systematics
 - Where we expect to be with ND280-upgrade & IWCD
 - Produced by scaling T2K systematics based on ND280-upgrade/IWCD sensitivity
- No systematics
 - Ideal case

Total percentage error on sample event rates:

	μ-Ι	ike		e	e-like	
Error model	u-mode	$\bar{\nu}$ -mode	ν -mode	$\bar{ u}$ -mode	u-mode	$ u/ar{ u} $ modes
			0 d.e.	0 d.e.	1 d.e.	0 d.e.
T2K 2018	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%
Improved	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%

Systematics

- $\bullet\,$ Hyper-K has high statistics \to systematics limited
- Going to show sensitivities
 - ▶ We have a range of systematics scenarios that span the possible values
- T2K 2018 systematics
 - Where we are now
- Improved systematics
 - Where we expect to be with ND280-upgrade & IWCD
 - Produced by scaling T2K systematics based on ND280-upgrade/IWCD sensitivity
- No systematics
 - Ideal case

Total percentage error on sample event rates:

	μ-Ι	ike		e	e-like	
Error model	u-mode	$\bar{\nu}$ -mode	ν -mode	$\bar{ u}$ -mode	u-mode	$ u/ar{ u} $ modes
			0 d.e.	0 d.e.	1 d.e.	0 d.e.
T2K 2018	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%
Improved	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%

Systematics

- $\bullet\,$ Hyper-K has high statistics \to systematics limited
- Going to show sensitivities
 - ▶ We have a range of systematics scenarios that span the possible values
- T2K 2018 systematics
 - Where we are now
- Improved systematics
 - Where we expect to be with ND280-upgrade & IWCD
 - Produced by scaling T2K systematics based on ND280-upgrade/IWCD sensitivity
- No systematics
 - Ideal case

Total percentage error on sample event rates:

	μ-Ι	ike		e	e-like	
Error model	u-mode	$\bar{\nu}$ -mode	u-mode	$\bar{ u}$ -mode	u-mode	$ u/ar{ u} $ modes
			0 d.e.	0 d.e.	1 d.e.	0 d.e.
T2K 2018	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%
Improved	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%

$\sin \delta_{CP} \neq 0$ sensitivity

$\sin \delta_{CP} \neq \mathbf{0} \text{ sensitivity}$

• What % of true values of δ_{CP} where we can exclude CP conservation, as a function of time?

• What % of true values of δ_{CP} where we can exclude CP conservation, as a function of time?

• What % of true values of δ_{CP} where we can exclude CP conservation, as a function of time?

• What is the significance to exclude CP conservation for true $\delta_{CP} = -\pi/2$, as a function of time?

$\sin \delta_{CP} \neq 0$ sensitivity systematics

- $\nu_e/\overline{\nu}_e$ cross-section uncertainty dominates this measurement
 - Coloured/dashed lines use same "Improved syst." baseline model, just changing 2 parameters driving this ratio

HK 10 years (2.70E22 POT 1:3 v:v)

Tom Dealtry (Lancaster University)

$\sin \delta_{CP} \neq 0$ sensitivity systematics

- $\nu_e/\overline{\nu}_e$ cross-section uncertainty dominates this measurement
 - Coloured/dashed lines use same "Improved syst." baseline model, just changing 2 parameters driving this ratio
 - HK 10 years (2.70E22 POT 1:3 ν:ν)

 Need to measure this ratio with low uncertainty!

δ_{CP} resolution sensitivity

δ_{CP} resolution sensitivity

$\sin^2(heta_{23})$ octant sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude the wrong octant? $(\sin^2(\theta_{23}) < \text{or} > 0.5)$

$\sin^2(heta_{23})$ octant sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude the wrong octant? $(\sin^2(\theta_{23}) < \text{or} > 0.5)$

• 3σ exclusion @ $\sin^2(\theta_{23}) < 0.47$ & $\sin^2(\theta_{23}) > 0.55$

- Updated Hyper-K long-baseline oscillation-parameter sensitivities
- After 10 years & improving on T2K-2018 error model based on sensitivity of ND280-upgrade & IWCD, we see
 - CP conservation exclusion for 62% of true δ_{CP} @ 5σ
 - δ_{CP} precision ~19° ($\delta_{CP} = -\pi/2$), ~7° ($\delta_{CP} = 0$)
 - Octant determination & maximal mixing exclusion for $\sin^2(\theta_{23}) < 0.47$ & $\sin^2(\theta_{23}) > 0.55$ @ 3σ
- Other Hyper-K talks at the conference
 - Supernova model discrimination with Hyper-K J. Migenda Friday 19th 10:20
 - ► Multi-PMT optical module for Hyper-K A. Ruggeri Thursday 25th 12:20
 - Hyper-Kamiokande F. Di Lodovico Thursday 25th 16:45

Backup

5 Other sensitivities

- δ_{CP} • $\sin^2(\theta_{23})$ sensitivities
- 6 Neutrino oscillations
- Atmospheric neutrino oscillations
- Near/intermediate detectors
 ND280 upgrade
 IWCD

9 Systematics

$\sin \delta_{CP} \neq 0$ sensitivity dependence on systematics

- $\nu_e/\overline{\nu}_e$ cross-section uncertainty dominates the δ_{CP} measurement
- Need to measure this ratio with low uncertainty!

$\sin \delta_{CP} \neq 0$ sensitivity dependence on $\sin^2(\theta_{23})$

- Effect driven by event rate
 - $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq 4\cos^{2}\theta_{13} \cdot \sin^{2}\theta_{13} \cdot \sin^{2}\theta_{23} \cdot \sin^{2}\left(\Delta m_{31}^{2}L/4E\right)$

$\sin^2(heta_{23}) = 0.5$ sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude maximal mixing? $(\sin^2(\theta_{23}) = 0.5)$

$\sin^2(heta_{23}) = 0.5$ sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude maximal mixing? $(\sin^2(\theta_{23}) = 0.5)$

Backup

Other sensitivities

δ_{CP}
sin²(θ₂₃) sensitivities

6 Neutrino oscillations

7 Atmospheric neutrino oscillations

Near/intermediate detectors
ND280 upgrade
IWCD

9 Systematics

Oscillation probabilities

Tom Dealtry (Lancaster University)

Backup

Other sensitivities

- δ_{CP}
 sin²(θ₂₃) sensitivities
- 6 Neutrino oscillations

Atmospheric neutrino oscillations

Near/intermediate detectors
ND280 upgrade
IWCD

9 Systematics

Atmospheric neutrino generation

• Cosmic rays strike nuclei creating ν_{μ} & ν_{e} with ratio:

• 2:1 < 1 GeV, rising to 3:1 @ 10 GeV

Atmospheric neutrino oscillations

 $\nu_{\rm e}$ flux (relative no oscillations) at $\cos \theta_{\rm zenith} = 0.8$

- Mass hierarchy creates resonance in ν_e or $\overline{\nu}_e$ multi-GeV events
- θ_{23} octant sets magnitude of the resonance
- δ_{CP} sets scale/direction of ~ 1 GeV interference

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

• Dashed lines show case where mass hierarchy is known

Addition of atmospherics enhances sensitivity slightly

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

• Solid lines show case where mass hierarchy is unknown

Addition of atmospherics gives massive improvement

- Atmospheric neutrinos have longer baseline & higher energies
 - ightarrow Enhances matter effect ($\propto E_{
 u}n_e$)
 - $\rightarrow\,$ Sensitivity to mass hierarchy
 - ightarrow Exclude incorrect mass hierarchy at 4–6 σ (depending on true $\sin^2(heta_{23})$)

Backup

Other sensitivities

- δ_{CP}
- $\sin^2(\theta_{23})$ sensitivities
- 6 Neutrino oscillations

7 Atmospheric neutrino oscillations

Near/intermediate detectors
ND280 upgrade
IWCD

9 Systematics

ND280 upgrade

- Upgrade to T2K off-axis near detector @ 280 m
- Increased efficiency for
 - Low-momentum tracks
 - High-angle tracks
- Being developed for T2K
 - Hyper-K will inherit it

ND280 upgrade

Hyper-Kamiokande $\nu/\bar{\nu}$ Beam Oscillation Sensitivities

- Upgrade to T2K off-axis near detector
 @ 280 m
- Increased efficiency for
 - Low-momentum tracks
 - High-angle tracks
- Being developed for T2K
 - Hyper-K will inherit it

200 300 400

.....

SFGD

······ FGDXZ

ND280 upgrade

- Upgrade to T2K off-axis near detector
- Increased efficiency for
 - Low-momentum tracks
 - High-angle tracks
- Being developed for T2K
 - Hyper-K will inherit it

Present muon selection in ND280

Intermediate water Cherenkov detector (IWCD)

- $\bullet\,$ Water Cherenkov detector @ ${\sim}1\,{\rm km}$
- Novel off-axis angle spanning method allows
 - Creation of narrow beam for cross-section analyses
 - Reconstruction of the oscillated flux

Backup

5 Other sensitivities

- δ_{CP}
- $\sin^2(\theta_{23})$ sensitivities
- 6 Neutrino oscillations

7 Atmospheric neutrino oscillations

Near/intermediate detectors
ND280 upgrade
IWCD

9 Systematics

Flux Uses external data to tune model

• e.g. NA61/SHINE thin-target hadron-production data

Cross section Uses external data to tune model

- e.g. MINER ν A, MiniBooNE, ..., ν -nucleus scattering data
- Uses NEUT 5.3.2

Final state interactions & secondary interactions Uses external data to tune model

• e.g. π -nucleus scattering data

SK detector Uses Super-K atmospheric neutrino data

• Flux & Cross-section uncertainties reduced by fit to near-detector data Nature 580, 339–344 (2020)

- Statistical error on Hyper-K atmospheric samples will reduce
 - Hyper-K fiducial volume = $8.4 \times \text{Super-K}$
- Statistical error at ND280 will reduce
 - \blacktriangleright ND280-upgrade increases fiducial mass by ${\sim}30\%$
 - More running with a higher power beam
- New detectors will produce better results
 - SFGD has increased nucleon tracking efficiency
 - ★ Get a handle on final state interactions
 - ★ Select $\bar{\nu} + H$ events
 - IWCD has excellent ν_e/ν_μ separation
 - $\star\,$ Measure ν_{e} & $\overline{\nu}_{e}$ cross sections to a few $\%\,$

T2K 2018 model								
	μ-Ι	ike	<i>e</i> -like					
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	ν -mode	$ u/ar{ u}$		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
Flux + xsec	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%		
Detector + FSI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%		
All syst	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%		
Improved mode								
	μ-Ι	ike		e-li	ke			
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	u-mode	$ u/ar{ u}$		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
Flux + xsec	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%		
Detector + FSI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%		
All syst	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%		

T2K 2018 model								
	μ-Ι	ike	<i>e</i> -like					
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	u-mode	$\nu/\bar{ u}$		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
Flux + xsec	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%		
Detector + FSI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%		
All syst	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%		
Improved mode								
	μ-Ι	ike		e-li	ke			
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	u-mode	$ u/ar{ u} $		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
Flux + xsec	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%		
Detector + FSI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%		
All syst	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%		

Assumptions reduce μ -like error \sim 4% \rightarrow \sim 2%

T2K 2018 model								
	μ-Ι	ike	<i>e</i> -like					
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	u-mode	$ u/ar{ u} $		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
Flux + xsec	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%		
Detector + FSI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%		
All syst	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%		
Improved mode								
	μ-Ι	ike		e-li	ke			
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	ν -mode	$ u/ar{ u}$		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
Flux + xsec	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%		
Detector + FSI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%		
All syst	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%		

Assumptions reduce 1-ring e-like + 0 decay e error ${\sim}6\% \rightarrow {\sim}2.5\%$

Tom Dealtry (Lancaster University)

T2K 2018 model							
	μ-Ι	ike	<i>e</i> -like				
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	ν -mode	$ u/ar{ u}$	
			0 d.e.	0 d.e.	1 d.e.	0 d.e.	
Flux + xsec	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%	
Detector + FSI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%	
All syst	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%	
Improved mode	l						
	μ-Ι	ike		<i>e</i> -li	ke		
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	ν -mode	$ u/ar{ u}$	
			0 d.e.	0 d.e.	1 d.e.	0 d.e.	
Flux + xsec	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%	
Detector + FSI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%	
All syst	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%	

Assumptions reduce total 1-ring e-like + 0 decay e $\nu\text{-mode}/\bar{\nu}\text{-mode}$ error ${\sim}5\%$ \rightarrow ${\sim}2.5\%$

Tom Dealtry (Lancaster University)