Physics opportunities at vSTORM

Luis Alvarez Ruso*
(on behalf of the collaboration)

* https://orcid.org/0000-0001-5184-0622

Supported by FIS2017-84038-C2-1-P and PROMETEO/2020/023 grants
Neutrinos from Stored Muons

\[\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \]
\[\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu \]

Precisely known flux:
- Normalization (< 1%)
- Flavor composition
- Energy spectrum

Feasibility at CERN: Ahdida et al., CERN-PBC-REPORT-2019-003
νSTORM: physics opportunities

- **Precise** (% level) and **detailed** neutrino **cross section** measurements
- Short-baseline **flavor transition** and **sterile** neutrino searches (following **SBN @ Fermilab**)

Precise (% level) and detailed neutrino cross section measurements:
- Elementary processes
- Neutrino-nucleus scattering

Crucial to reduce systematic uncertainties in oscillation studies.
Allows to study the axial structure of hadrons and nuclei.
Precise (% level) and detailed neutrino cross section measurements

Elementary processes: \(\nu \)-nucleon interactions

- poorly known
- priceless input for event generators
- valuable information about hadron structure (axial sector)

Neutrino-nucleus scattering (mismodeling in event generators can lead to **systematic errors** even if tuned to the best data)
ν cross sections

- **Precise** (% level) and **detailed** neutrino cross section measurements

- **Elementary processes**: ν – nucleon interactions
 - poorly known
 - priceless input for event generators
 - valuable information about hadron structure (axial sector)

- should be experimentally studied either
 - directly: measurements on H/D
 - or
 - indirectly: H-enriched targets + kinematic subtraction
 - High pressure TPC (CH$_4$) using transverse kinematic invalance
 - Subtraction using CH$_2$ and C solid targets

- **νSTORM**: precision, e and μ (anti)neutrino flavors
 - radiative corrections
 - non-standard interactions
Elementary processes

- **Quasielastic scattering:**

 CCQE:
 \[\nu(k) + n(p) \rightarrow l^-(k') + p(p') \]

 \[\bar{\nu}(k) + p(p) \rightarrow l^+(k') + n(p') \]

 NCE:
 \[\nu(k) + N(p) \rightarrow \nu(k') + N(p') \]

 \[\bar{\nu}(k) + N(p) \rightarrow \bar{\nu}(k') + N(p') \]

- Determination of the **nucleon axial form factor**
- “Standard candle” to constrain neutrino fluxes
Elementary processes

- Quasielastic scattering
- Inelastic scattering:
 - \(1\pi\) production: dominated by \(\Delta(1232)\) excitation
 - interference between RES and NonRES amplitudes, unitarity
- Above the \(\Delta(1232)\) peak \(W>1.3\) GeV:
 - several overlapping resonances
 - non-trivial interference
 - coupled channels
 - other processes: \(\nu_l \, N \rightarrow l \, N' \, \pi\pi\)
 \(\nu_l \, N \rightarrow l \, N' \, \eta\)
 \(\nu_l \, N \rightarrow l \, \Lambda(\Sigma) \, \bar{K}\)
- Very limited information about the axial current at \(q^2 \neq 0\)
Elementary processes

- Quasielastic scattering
- Inelastic scattering
- Shallow inelastic scattering:
 - transition from RES to DIS
 - very relevant for DUNE
 - role of Quark-Hadron duality
- Deep inelastic scattering: $W > 2 \text{ GeV}, Q^2 > 1 \text{ GeV}^2$
 - Parton distribution function (PDF) determination
 - Impact of higher twists
 - Hadronization: exclusive channels

Elementary processes

- Quasielastic scattering
- Inelastic scattering
- Shallow inelastic scattering
- Deep inelastic scattering

\[1 \lesssim p_\mu \lesssim 6 \text{ GeV/c} \]
Neutrino interactions on nuclei

νSTORM: precise measurements of ν cross sections on heavy targets:
- characterization of ν_e vs ν_μ differences
- Particularly important at low energy/momentum transfers (in Lab)

![Graphs showing $d^2\sigma/d^2(\omega \theta)$ for various energies and angles]
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - Particularly important at low energy/momentum transfers (in Lab)
 - high-statistics for ν_e cross section and the $\sigma(\nu_e)/\sigma(\nu_\mu)$ ratio
 - Among the largest systematic uncertainties @ DUNE
 - Required sensitivity to CP violation can be achieved with a smaller exposure
Neutrino interactions on nuclei

- νSTORM: precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
Two-nucleon currents

- 2-nucleon EW currents are allowed by symmetries
- Sizable contribution can be inferred from $A(e,e')X$

Megias et al., PRD 94 (2016)
Gallsmeiter et al., PRD 94 (2016)
Two-nucleon currents

- 2-nucleon EW currents are allowed by symmetries

- together with better QE nuclear models can explain MiniBooNE data with $M_A \approx 1$ GeV

Martini et al.

Nieves et al.
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - help understand **discrepancies with theory** found @ MINERvA
New precise measurements of cross sections on heavy targets:
- characterization of $\bar{\nu}_e$ vs $\bar{\nu}_d$ differences
- better understanding of the initial state
- study of meson-exchange currents (or 2p2h)

Help understand discrepancies with theory found at MINERvA & NOvA

MINERvA inclusive CC data [Rodrigues et al. PRL (2016) vs T2K ref. model (NEUT)]

P. Stowell, PhD dissertation (2019)
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - help understand discrepancies with theory found @ MINERvA & NOvA

Acero et al., EPJ C 80 (2020)
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - one- and two-nucleon knockout
 - single and multiple pion production
 - largely influenced by FSI
1π production on nuclei

- **GiBUU** Leitner, LAR, Mosel, PRC 73 (2006)
- Effects of **FSI** on pion kinetic energy spectra
 - Strong absorption in Δ region
 - Side-feeding from dominant π^+ into π^0 channel
 - Secondary pions through FSI of initial QE protons

$$\nu_\mu + ^{56}Fe \rightarrow \mu^- \pi X \quad E_\nu = 1 \text{ GeV}$$
Neutrino interactions on nuclei

\textbf{\nuSTORM:} precise measurements of \(\nu \) cross sections on heavy targets:
- characterization of \(\nu_e \) vs \(\nu_\mu \) differences
- better understanding of the initial state
- study of meson-exchange currents (or 2p2h)
- study of exclusive final states
 - one- and two-nucleon knockout
 - single and multiple pion production
 - largely influenced by FSI
 - relevant for calorimetric \(E_\nu \) determination
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - characterization of \(\nu_e \) vs \(\nu_\mu \) differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - one- and two-nucleon knockout
 - single and multiple pion production
 - “Rare” processes
 - strangeness production
 - e.g. single photon emission
 - possible BSM explanations of the MiniBooNE anomaly

P. Machado @ NeuTel 2021 (Feb. 25)
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - precise measurements of ν energies
 - μBooNE
 - \(\varepsilon \) vs \(\varepsilon' \) (or 2p2h)
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - one- and two-nucleon knockout
 - single and multiple pion production
 - "Rare" processes
 - strangeness production
 - e.g. single photon emission
 - possible BSM explanations of the MiniBooNE anomaly
 - under study @ MicroBooNE
 - M. Ross-Lonergan @ NeuTel 2021 (Feb 24)
Neutrino interactions on nuclei

- **νSTORM**: precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - Nuclear effects on PDF
 - understand the different nuclear effects in weak vs em processes
 - clarify the tensions between measurements with neutrinos and charged leptons
Short-baseline flavor transitions

- **νSTORM** has a **unique sensitivity** to short-baseline **flavor** transitions.
- Concept: using $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ search for
- ν_μ **appearance** from $\nu_e \rightarrow \nu_\mu$
 - observing $\mu^-\mu^+$ in large μ^+ background
 - requires good charge ID
- $\bar{\nu}_\mu$ **disappearance** from $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
 - observing $\mu^+\mu^-$ spectral distortion
 - requires accurate momentum measurement

- Non-unitarity of ν mixing matrix
- Non-standard interactions
- Lorentz invariance and CPT violation
 - $\nu_e \rightarrow \nu_\mu$ appearance and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ appearance are CPT conjugates
- eV-scale sterile neutrinos
 - $\bar{\nu}_\mu \rightarrow \bar{\nu}_e \leftarrow$ LSND anomaly
Sterile ν search

- νSTORM has a unique sensitivity to light sterile neutrinos.
- ν_μ appearance from $\nu_e \to \nu_\mu$
- $\bar{\nu}_\mu$ disappearance from $\bar{\nu}_\mu \to \bar{\nu}_e$
- 10^{21} POT $\approx 2 \times 10^{18} \mu^+$ decays
- 1.3 kt FD located ~ 2 km away from the ND
- In a $3+1$ sterile model:

Adey et al., PRD89 (2014)
Our present understanding of (few-GeV) neutrino interactions with matter would be **greatly improved** by new precise measurements with well-understood νSTORM flux at **advanced detectors**.

The future neutrino oscillation program can **greatly benefit**.

Progress in **hadron** and **nuclear physics**.

Potential to **discover/constrain** non-standard interactions.

Sensitive searches for **short-baseline flavor transitions**: potential to **discover sterile neutrinos** or **exclude** (10 σ) the presently allowed parameter space.