Physics opportunities at

Luis Alvarez Ruso* (on behalf of the collaboration)

^{*} https://orcid.org/0000-0001-5184-0622

ν STORM

Feasibility at CERN: Ahdida et al., CERN-PBC-REPORT-2019-003

ν STORM: physics oportunities

- Precise (% level) and detailed neutrino cross section measurements
- Short-baseline flavor transition and sterile neutrino searches (following SBN @ Fermilab)

ν cross sections

- Precise (% level) and detailed neutrino cross section measurements
 - Elementary processes
 - Neutrino-nucleus scattering
- Crucial to reduce systematic uncertainties in oscillation studies.
- Allows to study the axial structure of hadrons and nuclei.

ν cross sections

- Precise (% level) and detailed neutrino cross section measurements
 - **Elementary processes**: ν nucleon interactions
 - poorly known
 - priceless input for event generators
 - valuable information about hadron structure (axial sector)
 - Neutrino-nucleus scattering (mismodeling in event generators can lead to systematic errors even if tuned to the best data)

ν cross sections

- Precise (% level) and detailed neutrino cross section measurements
 - **Elementary processes**: ν nucleon interactions
 - poorly known
 - priceless input for event generators
 - valuable information about hadron structure (axial sector)
 - should be experimentally studied either
 - directly: measurements on H/D or
 - indirectly: H-enriched targets + kinematic subtraction
 - High presure TPC (CH₄) using transverse kinematic invalance
 - Subtraction using CH₂ and C solid targets
 - **STORM**: precision, e and μ (anti)neutrino flavors
 - radiative corrections
 - non-standard interactions

Quasielastic scattering:

$$egin{array}{c} ext{CCQE} :
u(k) + n(p) &
ightarrow & l^-(k') + p(p') \ \hline ar{
u}(k) + p(p) &
ightarrow & l^+(k') + n(p') \ \hline ext{NCE} :
u(k) + N(p) &
ightarrow &
u(k') + N(p') \ \hline ar{
u}(k) + N(p) &
ightarrow & ar{
u}(k') + N(p') \end{array}$$

- Determination of the nucleon axial form factor
- "Standard candle" to constrain neutrino fluxes

- Quasielastic scattering
- Inelastic scattering:
 - 1π production: dominated by Δ (1232) excitation
 - interference between RES and NonRES amplitudes, unitarity
- Above the Δ (1232) peak W>1.3 GeV:
 - several overlapping resonances
 - non-trivial interference
 - coupled channels
 - other processes: $rac{
 u_l \, N o l \, N' \, \pi \pi}{
 u_l \, N o l \, N' \, \eta} \
 u_l \, N o l \, \Lambda(\Sigma) \, ar{K}$
 - Very limited information about the axial current at $q^2 \neq 0$

- Quasielastic scattering
- Inelastic scattering
- Shallow inelastic scattering:
 - transition from RES to DIS
 - very relevant for DUNE
 - role of Quark-Hadron duality
- Deep inelastic scattering: W>2 GeV, Q² > 1 GeV²
 - Parton distribution function (PDF) determination
 - Impact of higher twists
 - Hadronization: exclusive channels

Lalakulich et al., AIP Conf. Proc. (2009)

- Quasielastic scattering
- Inelastic scattering
- Shallow inelastic scattering
- Deep inelastic scattering

TORM

 $1 \lesssim p_{\mu} \lesssim 6 \text{ GeV/c}$

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - Particularly important at low energy/momentum transfers (in Lab)

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - Particularly important at low energy/momentum transfers (in Lab)
 - high-statistics for ν_e cross section and the $\sigma(\nu_e)/\sigma(\nu_u)$ ratio
 - Among the largest systematic uncertainties @ DUNE
 - Required sensitivity to CP violation can be achieved with a smaller exposure

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)

Two-nucleon currents

2-nucleon EW currents are allowed by symmetries

Sizable contribution can be inferred from A(e,e')X

L. Alvarez-Ruso, IFIC

Gallsmeiter et al., PRD 94 (2016)

Two-nucleon currents

2-nucleon EW currents are allowed by symmetries

together with better QE nuclear models can explain MiniBooNE data with $M_A \approx 1 \text{ GeV}$

Martini et al.

Nieves et al.

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - help understand discrepancies with theory found @ MINFRVA

MINERvA inclusive CC data [Rodrigues et al. PRL (2016) vs T2K ref. model (NEUT) P. Stowell, PhD disertation (2019)

L. Alvarez-ruso, ific

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - help understand discrepancies with theory found @ MINERVA & NOVA

Acero et al., EPJ C 80 (2020)

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - one- and two-nucleon knockout
 - single and multiple pion production
 - largely influenced by FSI

1π production on nuclei

- GiBUU Leitner, LAR, Mosel, PRC 73 (2006)
 - Effects of FSI on pion kinetic energy spectra
 - strong absorption in Δ region
 - side-feeding from dominant π^+ into π^o channel
 - secondary pions through FSI of initial QE protons

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - one- and two-nucleon knockout
 - single and multiple pion production
 - largely influenced by FSI
 - relevant for calorimetric Ε_ν determination

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of ν_e vs ν_μ differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - one- and two-nucleon knockout
 - single and multiple pion production
 - "Rare" processes
 - strangeness production
 - e.g. single photon emission
 - possible BSM explanations of the MiniBooNE anomaly P. Machado @ NeuTel 2021 (Feb. 25)

VSTORM: precise measurements of ν cross sections on heavy targets:

- e.g. single photon emission
 - possible BSM explanations of the MiniBooNE anomaly
 - under study @ MicroBooNE M. Ross-Lonergan @ NeuTel 2021 (Feb 24)

- **STORM:** precise measurements of ν cross sections on heavy targets:
 - characterization of $\nu_{\rm e}$ vs ν_{μ} differences
 - better understanding of the initial state
 - study of meson-exchange currents (or 2p2h)
 - study of exclusive final states
 - Nuclear effects on PDF
 - understand the different nuclear effects in weak vs em processes
 - clarify the tensions between measurements with neutrinos and charged leptons

Short-baseline flavor transitions

- **STORM** has a **unique sensitivity** to short-baseline **flavor** transitions.
- Concept: using $\mu^+ \rightarrow e^+ \nu_e \, \overline{\nu}_{\mu}$ search for
- ${\color{red} \hspace{-1.5pt} \hspace{-1.5$
 - observing μ^- in large μ^+ background
 - requires good charge ID
- $\overline{\nu}_{\mu}$ disappearance from $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
 - \blacksquare observing μ^+ spectral distortion
 - requires accurate momentum measurement
- Non-unitarity of ν mixing matrix
- Non-standard interactions
- Lorentz invariance and CPT violation
 - $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ appearance and $\underline{\overline{}}_{\mu}$ $\underline{}$ appearance are CPT conjugates
- eV-scale sterile neutrinos
 - $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \leftarrow \text{LSND}$ anomaly

Sterile ν search

- νSTORM has a unique sensitivity to light sterile neutrinos.
- ${\color{red} \hspace{-1.5pt} \hspace{-1.5$
- $\overline{\nu}_{\mu}$ disappearance from $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- 10²¹ POT $\approx 2 \times 10^{18} \, \mu^+$ decays
- \blacksquare 1.3 kt FD located \sim 2 km away from the ND
- In a 3+1 sterile model:

Outlook

- Our present understanding of (few-GeV) neutrino interactions with matter would be greatly improved by new precise measurements with wellunderstood vSTORM flux at advanced detectors.
- The future neutrino oscillation program can greatly benefit.
- Progress in hadron and nuclear physics.
- Potential to discover/constrain non-standard interactions.
- Sensitive searches for **short-baseline flavor transitions**: potential to **discover sterile neutrinos** or **exclude (10** σ) the presently allowed parameter space.