NuSTORM accelerator: Challenges and opportunities

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers

NuSTORM accelerator challenges

- nuSTORM facility is a unique facility for
 - High muon rate
 - Well-characterised neutrino beam
- Several applications
 - Measurement neutrino scattering cross sections
 - Search for sterile neutrinos and other BSM physics
 - Provide a technology test-bed for the muon collider
- What is the nuSTORM facility?
- What is the physics reach?
- How can it provide a test-bed for the muon collider?

nuSTORM facility

What is the nuSTORM facility?

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020

- Main features
 - ~250 kW target station
 - Pion transport line
 - Stochastic muon capture into storage ring
 - Option for conventional FODO ring or high aperture FFA ring

Target and Pion Transport Line

A. Liu et al, Design and Simulation of the nuSTORM Pion Beamline, NIM A, 2015 D. Adey et al, Overview of the Neutrinos from Stored Muons Facility – nuSTORM, JINST, 2017

- Conventional 250 kW target horn
- Pion transport line
 - Proton beam dump
 - Momentum selection
 - Active handling

Stochastic Muon Capture

- Pions injected into the decay ring
- Capture muons that decay backwards in pion CoM frame
- Undecayed pions and forwards muons diverted into muon test area
 - Extraction line at end of first decay straight

Storage Ring

- Storage ring technologies:
 - Conventional FoDo ring
 - High acceptance FFA ring

Storage Ring

- Neutrinos momentum range up to 4 GeV
- Tunable ring energy under investigation
 - Optimisation so far has focused on 3.8 GeV µ
 - Higher energy would give more reach to cross section measurements
- Optimisation of storage ring to give improved neutrino flux
 - Hybrid FoDo straights with high acceptance FFA bends

Cross Section Measurement

J. A. Formaggio and G. P. Zeller. From eV to EeV: Neutrino Cross Sections Across Energy Scales Rev. Mod. Phys. 84 (2012)

- DUNE and T2K v energy spans QE and DIS
- Major contributor to systematic uncertainty
- See talk this afternoon!

Cross Section Measurement

- NuSTORM has excellent sensitivity to CCQE
- Studies of optimal detector geometries ongoing
- Studies of other cross-section sensitivities ongoing
- See talk this afternoon!

Sterile Neutrino Sensitivity

- Sterile neutrino sensitivity
 - Assumes 1.3 kt magnetized iron
 - 1.8 10¹⁸ useful muon decays
 - Flux known to 0.5 % level
- See talk this afternoon!

Challenges

- High current radioactive beam passing active components
 - Normal conducting transport line near target
 - Superconducting combined function dipoles in muon ring
- Containment of tertiary beam (i.e. muons)
 - Large momentum spread and transverse size

Muon Collider

- Why and how is nuSTORM related to muon collider?
- Muon beam physics highlighted as high priority initiative by European strategy update
 - ~10 TeV Muon Collider has **physics reach comparable to FCC-hh**
 - Footprint is considerably smaller
- CERN-led Muon Collider Collaboration formed in June
- Some discussion of making a "demonstrator"
 - Demonstrate some of the beam physics concepts
 - Address some of the technical issues

Muon Collider Facility

- Proton based Muon Collider (MC) facility
 - Protons on target \rightarrow pions, muons et al.
 - Transverse and longitudinal capture and cooling
 - Acceleration
 - Collider ring
- Challenges
 - High current radioactive beam passing active components
 - Containment of tertiary beam (i.e. muons)

Technologies

- High power dual-sign (µ⁺µ⁻) target
- Capture and ionisation cooling
- Acceleration and storage
 - Either conventional FODO-based Rapid Cycling Synchrotron
 - Or novel FFA

Low energy vFFA PoP Arxiv 2011.10783 (accepted in PRAB)

Ionisation Cooling

- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS completely cancels the cooling

Muon Cooling

- Muon ionisation cooling has been demonstrated by MICE
 - Muons @ ~140 MeV/c
 - Talk earlier today
- But
 - Transverse cooling only
 - No re-acceleration
 - No intensity effects
 - Larger emittance beams

nature

Explore our content 🗸 🛛 Journal information 🗸

nature > articles > article

Article | Open Access | Published: 05 February 2020

Demonstration of cooling by the Muon Ionization Cooling Experiment

MICE collaboration

Survey of Muon Beamlines

- NuSTORM would make an excellent facility
 - One of the highest current high energy muon beams
- Target/irradiation test area
- Muon beam physics tests

Summary

- nuSTORM facility ideal facility for a number of aims
 - Measure neutrino scattering cross sections
 - Search for sterile neutrinos and other BSM physics
 - Provide a technology test-bed for the muon collider
- Unique facility to yield
 - High muon rate
 - Well-characterised beam
- Potential to be the highest current high energy muon beam

