

JUNO – Detector Design and Status

Dr. Hans Th. J. Steiger | Johannes Gutenberg University Mainz (JGU) & Cluster of Excellence <u>PRISMA</u>⁺ XIX International Workshop on Neutrino Telescopes | INFN & Physics and Astronomy Department Padova | Padova, Italy | 02/22/2021

The JUNO Project – An Overview

Jiangmen Underground Neutrino Observatory

Multi-purpose experiment but with a main focus: Measurement of the Neutrino Mass Ordering using reactor anti-electron neutrinos

Neutrinos from two Nuclear Power Plants 26.6 GW_{th} power by 2020 (35.8 GW_{th} final)

JUNO Central Detector 20 kt Liquid Scintillator Target

The JUNO Collaboration

78 members from 16 countries! 675 collaborators

The 15th JUNO Collaboration Meeting January 13-17, 2020, Guangxi University, Nanning

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania
Chile	PCUC	China	USTC	Italy	INFN di Frascati
Chile	UTFSM	China	U. of South China	Italy	INFN-Ferrara
China 🧾	BISEE	China	Wu Yi U	Italy	INFN-Milano
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China 🧖	CUG-Beijing	Pakistan 7	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U. 🛛 🔍	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		

JUNO physics prospects - neutrino mass ordering and beyond

Supernova Neutrinos (burst) 5000 in 10 s for 10 kpc Diffuse Supernova Neutrinos ~ 3 / year

Solar Neutrinos ($\sim 10000 \text{ / day}$)

Proton Decay Search				
$p \rightarrow K^+ + v$				

Reactor Neutrinos ~ 60 / day

JUNO Yellow Book arXiv:1507.05613 Atmospheric Neutrinos several / day

Cosmic Muons ~ 250k / day, <E>=215 GeV

Geo Neutrinos \sim 1 / day

The Neutrino Mass Ordering

 $\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}$ $\Delta m_{21}^{2} = 7.5 \times 10^{-5} (eV)^{2}$ Slow Oscillation! $|\Delta m_{31}^{2}| = 2.4 \times 10^{-3} (eV)^{2}$ Fast Oscillation!

The sign and the absolute value of Δm_{31}^2 depend on the Neutrino Mass Ordering!

Normal Inverted m₅ $\Delta m_{21}^2 \left[(\Delta m_{sol}^2) \right]$ (Δm_{atm}^2) Δm_{32}^2 v_e ν., Δm_{31}^2 Δm m2. (Δm_{sol}^2) Δm_{21}^2 m m5 $m_1 < m_2 < m_3$ $m_{3} < m_{1} < m_{2}$

Solving the Mass Ordering problem is a key for other open questions in neutrino physics:

- $0\nu\beta\beta$ decay Majorana or Dirac neutrinos?
- δ_{CP} in the neutrino sector?
- Octant of θ_{23} ?

Detection of electron anti-neutrinos

Golden Channel for the detection of neutrinos

- High cross section
- Two signal coincidence (~ 236 µs)
- v energy can be reconstructed from e⁺ signal
- Threshold of 1.8 MeV

Requirements for the JUNO Detector

Reactor baseline variation: < 0.5 km

JUNO site in Jiangmen meets this requirements!

Energy resolution: $\sim \frac{3\%}{\sqrt{E(MeV)}}$ This is a crucial parameter!

Energy scale uncertainty:

Large uncertainties and unknown non-linearity $_{_{700}}$ could lead to the wrong mass ordering result! $_{_{600}}$

500

400

300

200

100

-100

- → Meticulous Calibration!
- \rightarrow Double calorimetry (small + large PMTs)

Statistics: 100 kEvents within 6 years!

26.6 GW_{th} reactor power 20 kt detector target (\sim 60 Evts. / Day) Minimization of the vetoed volume by precise muon track reconstruction

Energy spectrum of the JUNO $\overline{\nu}_e$ events (Effect of the energy resolution on the expected signal)

Overall Detector Design and Veto

Central detector:

- Acrylic sphere with liquid scintillator
- 17571 large PMTs (20-inch)
- 25600 small PMTs (3-inch)
- 78% PMT coverage
- PMTs in water buffer

Water Cherenkov muon veto:

- 2400 20" PMTs
- 35 ktons ultra-pure water
- Efficiency > 95%
- Radon control \rightarrow less than 0.2 Bq/m3

Compensation coils:

- Earth magnetic field <10%
- Necessary for 20" PMTs

Top tracker:

- Precision muon tracking
- 3 plastic scintillator layers
- Covering half of the top area

F

Experiment	Daya Bay	Borexino	KamLAND	JUNO
LS Target Mass [t]	8 x 20	~ 300	~ 1000	20000
Collected p.e./MeV	~ 160	~ 500	~ 250	~1200
nergy resolution @ 1 MeV	~ 8.5 %	~ 5 %	~ 6%	~3%

Large PMT Array

- 15000 MCP-PMTs from NNVT (Northern Night Vision Technology)
- 5000 dynode PMTs from Hamamatsu (R12860 HQE)
- 17571 PMTs will read out the scintillation light of the Central Detector
- All PMTs delivered to the JUNO site!
- PMT testing:
 - Acceptance tests finished
 - Tests with final electronics ongoing

Specifications	Unit	MCP-PMT (NNVT)	R12860 Hamamatsu HQE
Det. Efficiency (QE*CE)	%	26.9% (new Type: 30.1%)	28.1%
Peak to Valley of SPE		3.5, (>2.8)	3, (>2.5)
TTS on the top point	ns	12, (<15)	2.7, (<3.5)
Rise time / Fall Time	ns	RT~2, FT~12	RT~5, FT~9
Anode Dark Count	kHz	20, (<30)	10, (<50)
After Pulse Rate	%	1, (<2)	10, (<15)
Radioactivity (glass)	ppb	²³⁸ U: 50 ²³² Th: 50 ⁴⁰ K: 20	²³⁸ U: 400 ²³² Th: 400 ⁴⁰ K: 40

Large PMT Testing

PMT Testing Containers (all PMTs):

- Capacity: 36 (-5) PMTs per Container
- Relative PDE Measurement
 - 1 fixed & 4 rotating reference PMTs
- Four containiers
- Magnetic shielding: 10% EMF
- Climate control systems
- Two light sources:
 - stabilized LED
 - Picosecond-Laser
- Averaged PDE: 28.7%, (28.1% for dynode PMTs, 28.9% for MCP-PMTs)

Scanning Station (5-10% of PMTs):

- Provide non-uniformity measurement of PMT parameters
- Study dependence of PMT performance on magnetic field
- Provide a tool for precise PMT studies and cross calibration

PMT test box with PMT holder

PMT in the scanning station

Two testing containers in Zhongshan (Pan-Asia).

Light sources used in the testing containers

PDE differences (photocathode)

Small PMT Array

Double calorimetry

"Always" in photon counting mode

Less non-linearity: calibration of large PMT array

Better dynamic range for high energy signals

Higher granularity of the CD

25600 PMTs in the Central Detector

- 2.5% coverage
- Provided by HZC Photonics (Hainan, PR China)

Can effectively help in:

- Muon tracking (+ shower muon calorimetry)
- Supernova readout
- Solar oscillation parameter measurement

Arrangement of large and small PMTs

JUNO custom design: XP72B22 QE 24%, Peak / Valley 3.0, TTS 2-5 ns

x 128

Under water box provides supply for 128 PMTs (Prototype already built and successfully tested!)

Liquid scintillator purification pilot plants (in Daya Bay)

- Al₂O₃ filtration column: improvement of optical properties
- Distillation: removement of heavy metals, improvement of transparence
- Water Extraction: removement of radio isotopes from uranium and thorium chain and furthermore of ⁴⁰K (underground)
- Steam / Nitrogen Stripping: removement of gaseous impurities like Ar, Kr, and Rn (underground)

Optical Requirements:

Light output: **~10.000 Photons / MeV** → **~1200 p.e. / MeV** Attenuation length: **> 20 m @ 430 nm**

Required Radiopurity:

Reactor neutrinos: ²³⁸U / ²³²Th < 10⁻¹⁵ g/g, ⁴⁰K < 10⁻¹⁶ g/g Solar neutrinos: ²³⁸U / ²³²Th < 10⁻¹⁷ g/g, ⁴⁰K < 10⁻¹⁸ g/g, ¹⁴C < 10⁻¹⁸ g/g

Distillation System

Pilot plants for all purification steps with a capacity of ~100 l/h were installed in Daya Bay in 2017.

non-radiative

→ 280nm

non-radiative

→ 390nm

light emission

→ 430nm, *τ*≈4.4ns

Solvent:

+

2.5 g/l PPO

Wavelength

shifter:

3 mg/l bisMSB

Fluor:

Linear alkylbenzene

(LAB) as solvent

Extensive testing with one of the Daya Bay (DYB) antineutrino detectors (AD1) in 2017-2019!

steps Steam / N2 Stripping Plant Pre

> aya Water Extraction

Publication: NIM A 925 (2019) 6, arXiv: 1902.05288

LS Storage Tank Al₂O₃ Column

Liquid scintillator purification pilot plants (in Daya Bay)

Optical properties:

During extensive calibrations the recipe of the LS was refined.

Light Yields above 10.000 Photons / MeV were achieved.

Excellent stability of the light yield in the detector was observed during 14 month of measurement.

Preliminary JUNO mixture: LAB + 2.5 g/l PPO + 3mg/l bisMSB

Attenuation length of LAB improved by the purification from \sim 14 m to \sim 28 m @ 430 nm

Radiopurity:

The concentrations of 238 U / 232 Th were determined with the 24 t DYB AD1 exploiting the fast Bi/Po-coincidences of the decay chains.

Results: (Test in 2017)

C(²³⁸U) = (7.52 ± 1.41(sys.) ± 0.37(stat.)) × 10^{-15} g/g C(²³²Th) = (3.24 ± 1.00(stat.) ± 0.66(sys.)) × 10^{-15} g/g

OSIRIS - Online Scintillator Internal Radioactivity Investigation System

Liquid Scintillator purity monitor

Idea:

Detect radioactive contaminated scintillator **after purification** but **before filling** it into the acrylic vessel!

Exploit fast coincidences in the ²³⁸U and ²³²Th chains!

Expected Sensitivity (Simulation): JUNO IBD limit within a few hours JUNO solar limit possible 18 t LS volume (Ø=3 m, H=3 m)

Instrumentation:

~68x 20" PMTs for the scintillator ~12x 20" PMTs for the muon veto

Paper: Calib. Strategy arXiv:2011.06405

Overview of JUNO's Calibration Systems (including laser calibration system)

Calibration Systems

Neutron

source

Cable Loop System

JUNO TAO - Taishan Antineutrino Observatory

Measure reactor anti-neutrino spectrum with high resolution

- provide model-independent reference for JUNO
- benchmark to test nuclear databases
- provides increased reliability in measured isotopic antineutrino yields
- improve nuclear physics knowledge of neutron-rich isotopes
- shed light on reactor spectrum anomaly (5 MeV bump)
- searching for light sterile neutrinos with a mass ~1 eV
- ~36 × JUNO statistics

TAO Design Features:

- 2.6 ton Gd-LS as target material (1 ton fiducial mass)
- Detector placed at **30 m distance** from a **4.6 GW**_{th} reactor core
- 10 m² SiPM, with 50% PDE, Coverage: > 95%
- SiPMs and LS cooled down to -50 °C (-60 °C)

Expected Performance:

Conceptual Design Report Released in May 2020! arXiv: 2005.08745v1

- ~ 4500 p.e. / MeV collected charge
- Energy Resolution: ~ 1.7% @ 1 MeV, < 1.0% above 3 MeV

Planned to be online when JUNO starts the data taking!

Schedule & Milestones

2016

• Start PMT production

• Start CD parts production

2015

 Start civil construction • CD parts R&D

• PMT production line setup

• Int. Collaboration established!

2017

- Start PMT testing
- Top Tracker • arrived!
- Daya Bay LS tests

2018

- PMT potting start ٠
- Delivery of surface buildings
- Start production ٠ of acrylic sphere
- **OSIRIS** was • funded
- TAO working group formed

Data Taking

Det. assembly completed

2021-22

- Det. filling & comissioning
- **TAO** construction

2019-20

Electronics

preparation

starts

٠

٠

٠

Thank you for your attention!

Backup Slides

The Neutrino Mass Ordering

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta m_{21}^{2}\frac{L}{4E} - \sin^{2}2\theta_{13}\left(\cos^{2}\theta_{12}\sin^{2}\Delta m_{31}^{2}\frac{L}{4E} + \sin^{2}\theta_{12}\sin^{2}\Delta m_{32}^{2}\frac{L}{4E}\right)$$

$$\approx 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta m_{21}^{2}\frac{L}{4E} - \sin^{2}\theta_{13}\sin^{2}\Delta m_{ee}^{2}\frac{L}{4E} \quad for \ \Delta m_{12}^{2} \ll \Delta m_{32}^{2}$$
Vacuum oscillation probability (v₁ > v₂)
Here for $\Delta m_{31}^{2} = \Delta m_{32}^{2} + \Delta m_{21}^{2}$
(beat frequency)
$$\Delta m_{12}^{2} \ll \Delta m_{32}^{2}$$
With:

$$\Delta m_{12}^{2} \ll \Delta m_{32}^{2}$$

$$\Delta m_{31}^{2} = |\Delta m_{32}^{2}| + |\Delta m_{21}^{2}|$$
IO: $|\Delta m_{31}^{2}| = |\Delta m_{32}^{2}| - |\Delta m_{21}^{2}|$
Different beat frequency Δm_{ee}^{2} for both orderings!

How to control the energy scale uncertainties?

How to reach <1% uncertainty on the energy scale?

Answer: Meticulous Calibration!

- Many sources over the whole energy range!
- Many positions to keep residual non-uniformity low!

Other experiments already achieved 1% accuracy:

- Daya Bay: ~0.5%, Double Chooz: 0.74%
- Borexino <1% (at low energies), KamLAND 1.4%

E_{rec} / E_{true} for positron interactions 68 % C.L. region constrains the ratio to better than 1%

Reactor spectrum uncertainties

- Reactor spectrum might show micro-structure
 - A. A. Sonzogni, et al. arXiv:1710.00092
 - D. A. Dwyer & T. J. Langford, Phys. Rev. Lett. 114,012502 (2015)
- It might **degrade the MO sensitivity** by mimicking the periodic oscillation structures
- A known fine structure does not hurt for the Mass Ordering measurement!
 - Tested with multiple test spectra from an abinitio calculation (PRL 114, 012502 (2015))
- An unknown fine structure might be harmful!
 - Current databases rely on experimental data!
 - No information beyond measured energy resolution in the databases!

Relative differences of 3 synthetic spectra to ILL-data (Huber-Mueller-model)

Sensitivity to the Neutrino Mass Hierarchy

Sensitivity with 100k Events (\sim 6 years with 35.8 GW_{th}):

- No external constraints: $\overline{\Delta \chi^2} > 9$
- With 1% constraint: $\overline{\Delta \chi^2} > 16$

Requirements:

- Energy resolution of < 3% at 1 MeV
- Energy scale uncertainty < 1%
- Reactor core dispersion < 0.5 km

