

Latest results of the R2D2 project

A future o $\nu\beta\beta$ experiment

▶ arXiv:2007.02570 (accepted for publication in JINST)

Tom Neep, University of Birmingham, on behalf of the R2D2 team XIX International Workshop on Neutrino Telescopes, February 23, 2021

Introduction

• Observation of $o\nu\beta\beta$ decay would demonstrate the Majorana nature of the neutrino and point to the mass scale of new physics

Requirements for a $0\nu\beta\beta$ experiment

- 1. **Low background** Low rate of signal events requires as small a background as possible
- 2. Large isotope mass Limits on $0\nu\beta\beta$ half-life require large isotope masses
- 3. **Good energy resolution** Essential to discriminate the $0\nu\beta\beta$ signal from the $2\nu\beta\beta$ background

Properties of Spherical Proportional Counters

- Low background a) Spherical shape has the optimal surface-to-volume ratio, b) Very low material budget c) Radial discrimination through pulse analysis
- Large isotope mass Large masses of extremely pure gaseous isotopes can be achieved through high pressure operation
- 3. Good energy resolution The subject of this talk

• SPCs good 0νββ detectors? Conceptual design investigated in detail in • JINST 13 (2018) 01, P01009

The R2D2 project

- R2D2 (Rare decays with a radial detector) is an R&D project to investigate using a Xenon filled SPC to search for oνββ
- SPCs currently being used to search for dark matter (NEWS-G project)

The initial goal of the project is to demonstrate the required energy resolution to search for $0\nu\beta\beta$ can be achieved (1% FWHW at $Q_{\beta\beta}$ of 2.458 MeV)

Experimental setup

R2D2 spherical TPC: first energy resolution results

R. Bouet^a J. Busto^b V. Cecchini^{a, f} C. Cerna^a A. Dastgheibi-Fard^c F. Druillole^a C. Jollet^a P. Hellmuth^a I. Katsioulas^d P. Knights^{d, e} I. Giomataris^e M. Gros^e P. Lautridou^f A. Meregaglia^{a,1} X. F. Navick^e T. Neep^d K. Nikolopoulos^d F. Perrot^a F. Piquemal^a M. Roche^a B. Thomas^a R. Ward^d M. Zampaolo^c

^a CENBG, Université de Bordeaux, CNRS/IN2P3, F-33175 Gradignan, France ^bCPPM, Université d'Aix-Marseille, CNRS/IN2P3, F-13288 Marseille, France ^cLSM, CNRS/IN2P3, Université Grenoble-Alpes, Modane, France ^d School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom ^eIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ^f SUBATECH, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, France

- To investigate whether the desired energy resolution can be achieved a 20 cm radius aluminium SPC has been produced and operated at CENBG in Bordeaux
- The detector was filled with a mix of Argon/CH4 (98/2%)
- An α particle source (210Po) was used, producing α particles with E = 5.3 MeV

Results (i)

- Measured data are compared with simulation results using > JINST 15 (2020) 06, C06013
- Good agreement
- Pulse properties can be used to select specific events

Results (ii)

Resolution measurement

- The energy resolution is measured to be \approx 1.1% FWHM at 5.3 MeV
- Scaling to the $Q_{\beta\beta}$ of 136Xe gives a resolution of 1.6%
- Tested at two different pressures (track lengths varying from a few to 20 cm). Results independent of track length.
- Promising first results!

Coming soon

- A new detector certified to operate at 40 bar is on the way
- Will be operated with Xenon to confirm energy resolution at high pressure
- Stay tuned for new results!

