Latest results of the R2D2 project

A future $\nu\beta\beta$ experiment

arXiv:2007.02570 (accepted for publication in JINST)

Tom Neep, University of Birmingham, on behalf of the R2D2 team
XIX International Workshop on Neutrino Telescopes, February 23, 2021
Observation of $0\nu\beta\beta$ decay would demonstrate the Majorana nature of the neutrino and point to the mass scale of new physics.

Requirements for a $0\nu\beta\beta$ experiment

1. **Low background** Low rate of signal events requires as small a background as possible
2. **Large isotope mass** Limits on $0\nu\beta\beta$ half-life require large isotope masses
3. **Good energy resolution** Essential to discriminate the $0\nu\beta\beta$ signal from the $2\nu\beta\beta$ background

Properties of Spherical Proportional Counters

1. **Low background** a) Spherical shape has the optimal surface-to-volume ratio, b) Very low material budget c) Radial discrimination through pulse analysis
2. **Large isotope mass** Large masses of extremely pure gaseous isotopes can be achieved through high pressure operation
3. **Good energy resolution** The subject of this talk

- **SPCs good $0\nu\beta\beta$ detectors?** Conceptual design investigated in detail in [JINST 13 (2018) 01, P01009](#)
The R2D2 project

- **R2D2** (Rare decays with a radial detector) is an R&D project to investigate using a Xenon filled SPC to search for $\nu\beta\beta$
- SPCs currently being used to search for dark matter (NEWS-G project)

The initial goal of the project is to demonstrate the required energy resolution to search for $\nu\beta\beta$ can be achieved (1% FWHW at $Q_{\beta\beta}$ of 2.458 MeV)
R2D2 spherical TPC: first energy resolution results

R. Boueta J. Bustob V. Cecchinia,c,f C. Cernaa A. Dastgheibi-Farda F. Druillola C. Jolleta P. Hellmutha I. Katsioulasd,f P. Knightsd,c I. Giomatarise M. Grosa P. Lautridouf A. Meregagliaa,c X. F. Navicka T. Neepd K. Nikolopoulosd F. Perrota,c F. Piquemala M. Rochea B. Thomasa R. Wardd M. Zampaoloc

aCENBG, Université de Bordeaux, CNRS/IN2P3, F-33175 Gradignan, France
bCPPM, Université d’Aix-Marseille, CNRS/IN2P3, F-13288 Marseille, France
cLMS, CNRS/IN2P3, Université Grenoble-Alpes, Modane, France
dSchool of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom
eIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
fSUBATECH, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, France

- To investigate whether the desired energy resolution can be achieved a 20 cm radius aluminium SPC has been produced and operated at CENBG in Bordeaux
- The detector was filled with a mix of Argon/CH\textsubscript{4} (98/2\%)
- An α particle source (210Po) was used, producing α particles with $E = 5.3$ MeV
Results (i)

- Measured data are compared with simulation results using JINST 15 (2020) 06, C06013
- Good agreement
- Pulse properties can be used to select specific events
Results (ii)

Resolution measurement

- The energy resolution is measured to be $\approx 1.1\%$ FWHM at 5.3 MeV
- Scaling to the $Q_{\beta\beta}$ of 136Xe gives a resolution of 1.6%
- Tested at two different pressures (track lengths varying from a few to 20 cm). Results independent of track length.
- Promising first results!

Coming soon

- A new detector certified to operate at 40 bar is on the way
- Will be operated with Xenon to confirm energy resolution at high pressure
- Stay tuned for new results!