Gaseous detectors for Neutrinonucleus coherent scattering at the ESS **F. Monrabal** (Donostia International Physics Center)

XIX International Workshop on Neutrino Telescopes (Venice)

Neutrino-nucleus coherent scattering

qR<1

Long wavelength, "sees" all nucleons simultaneously

Neutrino energies up to a few tens of MeV

Old known in the Standard model.

- Large enhancement to cross-section for En < few tens of MeV.
- Very low nuclear recoil energies, few keV.
- Energy threshold ideally << 1keV.
- 43 yrs until successful detection... combination of source & detector technology was missing
- Cryogenic bolometers and many other methods proposed over the last four decades.

Neutrino-nucleus coherent scattering Very rich physics

Coherent v-N scattering Detection

- CEvNS was experimentally demonstrated by the COHERENT experiment 43 years following its theoretical description, using the Spallation Neutron Source (SNS), at the Oak Ridge National Laboratory, USA.
- A low-background 14.6 kg Csl[Na] scintillator was employed as the detecting medium.

First Observation of CEvNS (6.7 sigma, 15 months of data, ~3.5 years total)

Arrival time (μ s)

Strong correlation to instantaneous beam power.

> Histograms are SM predictions

Negligible beam-related backgrounds

Coherent v-N scattering Sources

- CEvNS sources, must be sufficiently intense in yield, and low enough in neutrino energy so the coherence condition can be satisfied
- |Q|<1/R, where |Q| is the momentum transfer and R is the radius of the nucleus).
- **Spallation sources** produce nuclear recoils as energetic as allowed by the coherence condition, facilitating its detection.
- Pulsed beam timing reduced the impaction steady-state backgrounds

A new opportunity for CEvNS

The European Spallation Source (ESS)

- The ESS will combine the world's most powerful superconducting proton linac with an advanced hydrogen moderator, generating the most intense neutron beams for multi-disciplinary science.
- It will also provide an order of magnitude increase in neutrino flux with respect to the SNS.
- A great opportunity for Europe to lead this physics!

ESS – A long-pulse spallation source

SNS	ESS
1.4 MW	5 MW
695 ns	2.86 ms
34 GW	125 MW
24 kJ	357 kJ
60 Hz	14 Hz
	SNS 1.4 MW 695 ns 34 GW 24 kJ 60 Hz

7

A new opportunity for CEvNS

Comparison with current and future facilities

- ESS will produce the largest low energy neutrino flux of the next generation facilities.
- This is a unique opportunity that allows the use of small detectors.
- Diversity of technologies not statistically limited guarantees the phenomenological exploitation of the measurements.

A new opportunity for CEvNS ESS vs SNS

- Neutrino flux depends on proton current and on proton energy. v/p grows with Ep
- v production @ ESS is x9.2 @ SNS
- signal-to-background depends on square root of duty cycle (slightly better signal/bckg at ESS).

A new opportunity for CEvNS **Background at the ESS**

- CEvNS signals.
- Working together with ESS personnel and J. Collar (U. Chicago).
- Two promising locations have already been identified.
- Steady-state background can be subtracted.

• We need to find locations where the prompt neutrons from the ESS tungsten target do not compete with

Adding elements of the building structure using NAVISWORKS 3-D layouts

Coherent v-N scattering Detectors

- The single observable from CEvNS is a recoiling nucleus, which generates a signal in the few keV to sub-keV energy range.
- This requires detectors with ultra-low detection threshold. A common business with the Dark Matter Industry.
- Huge cross section (compare with all other neutrino interactions) allows "miniature detectors"

JHEP 02 (2020) 123 Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

D. Baxter,¹ J.I. Collar,^{1,*} P. Coloma,^{2,†} C.E. Dahl,^{3,4} I. Esteban,^{5,‡} P. Ferrario,^{6,7,§} J.J. Gomez-Cadenas,^{6,7,} M. C. Gonzalez–Garcia,^{5,8,9,**} A.R.L. Kavner,¹ C.M. Lewis,¹

F. Monrabal,^{6,7,††} J. Muñoz Vidal,⁶ P. Privitera,¹ K. Ramanathan,¹ and J. Renner¹⁰

Detector Technology	Target	Mass	Steady-state	E _{th}	QF	E_{th}	$\Delta E/E$ (%)	E _{max}	$CE\nu NS NR/yr$
	nucleus	(kg)	background	(keV_{ee})	(%)	(keV_{nr})	at E_{th}	(keV_{nr})	@20m, > E_{th}
Cryogenic scintillator	CsI	22.5	10 ckkd	0.1	~10 71	1	30	46.1	8,405
Charge-coupled device	Si	1	1 ckkd	$0.007 (2e^{-})$	4-30 97	0.16	60	212.9	80
High-pressure gaseous TPC	Xe	20	10 ckkd	0.18	20 104	0.9	40	45.6	7,770
p-type point contact HPGe	Ge	7	$15 \mathrm{ckkd}$	0.12	20 118	0.6	15	78.9	1,610
Scintillating bubble chamber	Ar	10	0.1 c/kg-day	-	-	0.1	~ 40	150.0	1,380
Standard bubble chamber	C_3F_8	10	0.1 c/kg-day	-	-	2	40	329.6	515

 Technologies sensitive to 1 keVnr nuclear recoils Interesting physics concentrates at low-E (e.g. n) magnetic moment). Also, maximum statistics.

 Interesting CsI/Xe overlap (same response, different systematics)

Gaseous detectors?

solid scintillators (Csl) or liquid detectors.

limited by statistics

The main problem with gaseous detectors is their relatively low density when compared with

Thanks to the large neutrino flux produced by the ESS, detectors with ~20 kg won't be

Gaseous detectors?

High pressure gaseous detector have other advantages:

- Simpler, no need of a cryogenic system.
- Larger EL amplification. \bullet
- Allow to operate with different nuclei in the \bullet same set-up with minimal increase of the costs.
- High pressure xenon technology developed by the NEXT collaboration for bb0v searches.
 - Most of the solutions already developed for low-background experiments.
 - Some R&D will be needed for very low energies, and possible higher pressures.

Gaseous detectors?

- Electroluminescence amplification increases with pressure. Signals as low as 1-2 ionized electrons can be detected. This reduces the expected energy threshold to less than 1 keVee.
- We'll also need larger voltages.
- Dedicated studies of the response of gaseous detectors to few-keV nuclear recoils will be necessary to reduce the present uncertainty on the quenching factor.
- A dedicated set-up is being designed at DIPC that will also serve to test the technology at very low energies and take decision for the large detector.
- Optimisation of the optics for different emission spectra needed to operate with different gases.
- R&D for very high pressures will allow to increase the mass in lighter gases.

4000

(channels)

Relativ

Dependance of EL yield with the reduced field for different Xe pressures

Dedicated set-up for the QF determination at low energies currently under design at DIPC.

High pressure noble gases laboratory being equipped at the DIPC

Gas circuit already under construction

Gaseous detector for Neutrino physics at the ESS (GaNESS)

Symmetric detector with two PMT planes to be sensitive to tiny signals. Large optical coverage with minimal dark current. Expected to be sensitive to single electrons.

Avoid using WLS to prevent spurious signals from possible re-emission.

NEXT-NEW

Copper shield: 6cm in the main body, 12 cm in the end caps

Energy plane with PMTs 18

Detector can be optimised for operation at the ESS

Much work to do before ESS protons-on-target

- CEvNS detector construction/modifications
- Quenching Factor studies
- Neutron back measurements & simulations
- Location at the ESS
- Neutrino flux characterisation
- Phenomenology

20

Coherent Elastic Neutrino-Nucleus Scattering at the ESS

Expression of Interest

J.I. Collar,^e J.J. Gomez-Cadenas,^{d,g} F. Monrabal,^{d,g} P. Privitera,^e A. Algora,^j L. Arazi,^m F. Ballester,^k D. Baxter,^e C. Blanco,^e M. Blennow,^q F. Calviño,ⁿ G. Carlsson,^t J. Cederkall,^t P. Coloma,^j C.E. Dahl,^{c,f} D. Di Julio,^{t,u} C. Domingo-Pardo,^j T.J.C. Ekelöf,^x I. Esteban,^b R. Esteve,^k M. Fallot,^s E. Fernandez-Martinez,^p P. Ferrario,^{d,g} H.O.U. Fynbo,^v P. Golubev,^t M.C. Gonzalez-Garcia,^{a,b,h} A.M. Heinz,^w J. A. Hernando,ⁱ P. Herrero,^d V. Herrero,^k P. Huber,^o A.R.L. Kavner,^e E.B. Klinkby,^u C.M. Lewis,^e M. Lindroos,^u N. Lopez-March,^k E. Lytken,^t P.A.N. Machado,^f M. Maltoni,^p J. Martin-Albo,^j T.M. Miller,^u F.J. Mora, K G. Muhrer, J. Muñoz-Vidal, E. Nacher, T. Nilsson, P. Novella, C. Peña-Garay, K. Ramanathan, J. Renner, J. Rodriguez,^k B. Rubio,^j J. Salvado,^b V. Santoro,^u T. Schwetz,^r J.L. Tain,^j A. Takibayev,^u A. Tarifeño-Saldivia,ⁿ J.F. Toledo,^k U. Uggerhøj,^v and L. Zanini^u

- ^aC.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook NY 11794-3849, USA
- ^b Departament de Fisíca Quántica i Astrofísica, Institut de Ciéncies del Cosmos, Universitat de Barcelona, E-08028 Barcelona, Spain
- ^C Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- ^d Donostia International Physics Center (DIPC), 20018 San Sebastián / Donostia, Spain
- ^e Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
- ^J Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- ⁸ Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- ^hInstitucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- ¹Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, E-15782, Spain
- ^JInstituto de Física Corpuscular (IFIC), CSIC & Universitat de Valencia, Paterna, E-46980, Spain
- ^k Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC Universidad Politécnica de Valencia, Valencia, E-46022, Spain
- ¹Laboratorio Subterráneo de Canfranc, Canfranc Estación, Huesca, E-22880, Spain
- ^mNuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- ⁿUniversitat Politecnica de Catalunya, UPC, Intstitut de Tecniques Energetiques (INTE). Av. Diagonal 647, Barcelona, Spain
- ^o Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
- ^PDepartamento de Fisica Teorica and Instituto de Fisica Teorica, IFT-UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- ^q Department of Physics, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- ^r Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- ^SSUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
- ¹ Physics Department, Lund University, PO Box 118, 221 00 Lund, Sweden
- ^u European Spallation Source, PO Box 176, SE-221 00 Lund, Sweden
- ^v Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
- W Department of Physics, Chalmers University of Technology, S-41296 Gothenburg, Sweden
- ^x Department of Physics and Astronomy, Uppsala University, SE-752 37 Uppsala, Sweden.

- ESSvSB pulse compression brings:
 - \bullet

Conclusions

- CEvNS detections opens a large number of phenomenological proposals.
- ESS will become the largest low-energy neutrino source. Perfect facility to study this process.
- The best source deserves an effort to operate the best possible detectors.
- Medium size gaseous detectors can observe the process at the ESS.
- They offer interesting opportunities to explore all physics of the CEvNS.
- An effort already on-going at the DIPC to develop the necessary infrastructures to develop this project.
- Future upgrades of the ESS with pulse compression will enhance sensitivities of this technology to new physics.