Yury Malyshkin

(Joint Institute for Nuclear Research)

for the JUNO Collaboration

Oscillation Physics in JUNO

XIX International Workshop on Neutrino Telescopes Febraury 18-25, 2021 (online)

RSF grant #21-42-00023

JINR

Open Questions in Neutrino Oscillation Physics

- Neutrino mass hierarchy: normal ordering (NO) or inverted ordering (IO)?
- Only 3 flavor or there are sterile states?

P.F. de Salas et al, arXiv:1806.11051]

 Precise values of mixing angles and mass splittings

Probability of finding the
$$\alpha$$
 neutrino flavor in the i-th neutrino mass eigenstate. The CP-violating phase is varied $(0 \rightarrow 2\pi)$.

$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\rm CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{\rm CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{\rm CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\rm CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{\rm CP}} & c_{23}c_{13} \end{bmatrix}$$
$$P_{\alpha \to \beta} = |\langle \nu_{\beta}(L)|\nu_{\alpha}\rangle|^{2} = \left|\sum_{i} U_{\alpha i}^{*}U_{\beta i}e^{-i\frac{m_{i}^{2}L}{2E}}\right|^{2}$$

NeuTel 2021

Neutrino Mass Ordering Status

Currently the normal mass ordering is slightly preferred:

(as of Neutrino-2020)

Atmospheric and accelerator experiments rely on matter effects.

Their final sensitivities depend on (yet unknown) oscillation parameters.

Resolving 5σ sensitivity is not guaranteed.

Additional experimental effort is crucial

NeuTel 2021

JUNO Experiment Layout

NeuTel 2021

JUNO Detector

- Source: 8 reactor cores (2 NPPs)
 - Powerful and relatively well understood
- Baseline: 52.5 km
 - Optimized for resolving NMO
- Overburden: ~700 m
 - Cosmic background suppression
- Detection channel: $\bar{\nu}_e + p \rightarrow e^+ + n$
 - ▷ Time coincident signal
 - Positron brings energy information
- Target: 20 kton of LAB-based liquid scintillator
 - Admixtures optimized for high light yield and transparency

3% energy resolution @ 1 MeV

- ▷ ~1300 p.e. / MeV
- Light detection: 18000 20" PMTs + 25600 3" PMTs
 - ▷ >75% photo-coverage
 - two independent PMT systems

O(100k) events in 6 years

NeuTel 2021

JUNO Spectrum Ingredients

• Neutrino generated in reactor cores:

thousands of β -decays branches of fission reactions in reactor core (up to several MeV)

• Observed via Inverse Beta-Decay (IBD):

$$\bar{\nu}_e + p \to n + e^+$$

(reaction threshold: 1.8 MeV)

• Positron energy used to recover neutrino energy:

$$E_{\nu} = E_{e^+} + \Delta m_{n-p} + T_n$$

Information in JUNO Spectrum

NeuTel 2021

Energy Scale in JUNO

Unaccounted non-lineairity

may mimic wrong NMO:

Non-linearity is composed of:

- 1) Physics non-linearity:
 - Scintillation quenching, following Birks' law.
 - Cherenkov emission dependence on particle's velocity.
- 2) Instrumental non-linearity:
 - PMT instrumentation and electronics, channelwise response.

The dynamic range for 20" PMT is about 2 orders of magnitude, so one has to be very careful – see talk by Yang Han about Dual Calorimetry (a novel approach to mitigate this kind of non-linearity).

< 1% energy scale uncertainty

[see arXiv:2011.06405 for more details]

Energy Resolution in JUNO

Crucial for sensitivity to:

Mainly defined by:

- LS light yield (photon statistics)
- PMT detection efficiency
- Performance of energy reconstruction

The goal is 3% at 1 MeV

Mass Ordering Determination Prospects

- Independent on $\delta_{\rm CP}$ and $\theta_{\rm _{23}}$

3σ sensitivity in 6 years of data taking

• With $|\Delta m^2_{\mu\nu}|$ input JUNO sensitivity might be further improved:

> 4 σ (in 6 years) for 1% external uncertainty for $|\Delta m^2_{\mu\nu}|$

- Strong synergies with other experiments:
 - through Δm_{31}^2 for atmospheric neutrinos (KM3NeT/ORCA and IceCube)
 - through Δm_{32}^2 for accelerator neutrino (NOvA and T2K)

> 5σ (in 6 years) in case of joint analysis

See talk on JUNO/ORCA combination by Chau Thien Nhan

Measurement of Oscillation Parameters

JUNO will be the first experiment to observe two modes of neutrino oscillations simultaneously:

'solar', driven by $\sin^2\theta_{12}$ and Δm^2_{21}

'atmospheric', driven by $\sin^2\theta_{13}$ and Δm^2_{31} (Δm^2_{32})

Main factors affecting sensitivity to oscillation parameters:

- reactor rate and shape uncertainty

 TAO helps here!
- backgrounds: mainly accidentals and geo-neutrino

(in %)	$\sin^2 \theta_{_{12}}$	$\Delta m_{_{21}}^2$	$\sin^2 \theta_{_{13}}$	$\Delta m_{_{31}}^2 / \Delta m_{_{32}}^2$
Current precision (NuFIT)	4.0	2.8	2.8	1.1
JUNO (6 years)	<0.6	<0.6	~10	<0.6

Solar ⁸B Neutrinos

Another channel to measure solar oscillation parameters!

Oscillation media: Sun + Earth

Detection channel: elastic scattering on electrons

Energy threshold: 2 MeV

Signal / background: 60k / 30k (10 years)

Slight 1.4 σ tension for Δm_{21}^2 between KamLAND (7.5 \cdot 10⁻⁵ eV²) and SNO+SK (6.1 \cdot 10⁻⁵ eV²)

- 0.9% sensitivity to Day/Night asymmetry (1.1% in Super-K)
- Smaller $\Delta m_{_{21}}^2$ leads to a larger Day-Night asymmetry
- Δm_{21}^2 measurement precision similar to the current global precision

NeuTel 2021

Reactor Anti-Neutrino Spectrum Fine Structure

Reactor $\overline{\nu}_{e}$ spectrum is composed of thousands of β -decay branches and might have fine structures.

State-of-the-art knowledge does not provide data beyond its energy resolution:

- 5-8% @ 1 MeV in Daya Bay, Double Chooz and RENO
- Huber-Mueller model uses about 30 virtual β-spectra without detailed structure

An unknown fine structure might mimic wrong ordering oscillation pattern → harmful for JUNO mass ordering measurement!

NeuTel 2021

TAO (Taishan Antineutrino Observatory)

An innovative apparatus:

30 x JUNO statistics

- 1 ton fiducial volume / 2.6 tons of Gd-LS
- Almost full coverage with SiPM (~50% PDE @ -50°C)

~2% at 1 MeV energy resolution

Measurement of reactor \overline{v}_e spectrum at 30 m distance from a Taishan NPP core (almost no oscillations):

- → Provide model-independent reference for JUNO
- Improvement of nuclear databases

Planned to be online in 2022

TAO Light Sterile Neutrino

Motivation – observed tensions with 3-flavor paradigm:

- Reactor $\overline{\nu}_{e}$ deficit with respect to the state-of-the-art prediction models
- Anomalous $\overline{\nu}_{e}$ appearance in the $\overline{\nu}_{u}$ beam at the LSND and MiniBooNE
- Deficit in number of v_{e} from radioactive calibration source in gallium experiments

Sterile neutrino could explain these anomalies

Setup:

baseline: ~30 m

detection efficiency: 50%

3 years of data taking (~1.8M events)

5% bin-to-bin uncertainty in 50 keV bins

TAO will provide new constraints in 0.1–3 eV² Δm^2 region

Summary

Neutrino Mass Ordering

- Observing reactor neutrino at 52.5 km distance JUNO will see an oscillation pattern of two oscillation modes
- The higher frequency pattern will bring information on NMO: **3σ sensitivity in 6 years**
- Independent from matter effects and complementary to other experiments
- Strong synergy with atmospheric and long-baseline experiments: 5σ + sensitivity

Oscillation Parameters

- Significant precision improvement for $\sin^2 \theta_{12}$, Δm_{21}^2 and $\Delta m_{31(32)}^2$ – at sub-percent level
- Estimate of $\sin^2\theta_{12}$, Δm^2_{21} from solar neutrino
 - different channel
 - comparable with current precision

TAO

- Measurement of reactor spectrum fine structure – a proxy for JUNO and valuable data for future experiments
- Improved constrain on sterile neutrino in $0.1-3 \text{ eV}^2 \Delta m^2$ region

52.5 km

Taishan NPP 2 x 4.6 GW

See also: Donglian Xu "JUNO" on 25/02/2021 and other talks

Hong Kong

Macao