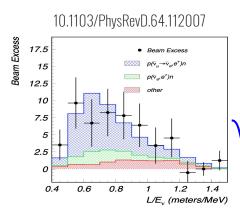
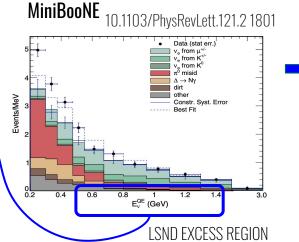
A Dark Seesaw at Low Energy Experiments

Asli M. Abdullahi

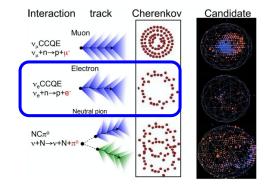
Institute for Particle Physics Phenomenology Durham University Based on 2007.11813 With Silvia Pascoli, Matheus Hostert

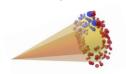
XIX International Workshop on Neutrino Telescopes




Short baseline anomalies

Where do the short baseline anomalies point us?


LSND


A **3.8 sigma** excess of 87.9 ± 22.4 + 6 events

A **4.8 sigma** excess of 560.6 ± 119.6 (77.4 ± 28.5) events in nu (anti-nu) mode

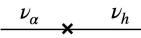
Possible alternatives to standard electron or photon hypotheses are:

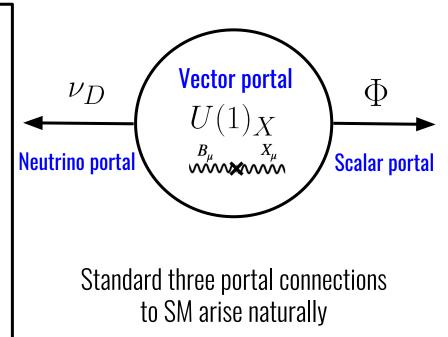
Overlapping e+e-

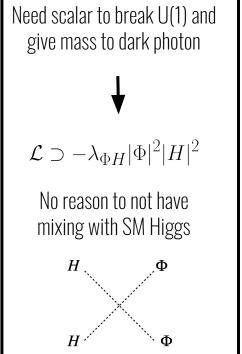
Asymmetric pair of e+e-

Portals to a neutral dark sector

How do we build a model that can give us the right signature?






$$\mathcal{L} \supset -y_D \overline{N} \Phi \nu_D^c$$

$$\mathcal{L} \supset -y_N \overline{L} \tilde{H} N$$

Additional sterile neutrino allows mass mixing with SM neutrinos

The Dark Seesaw Model

Particle content

	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_X$
$\hat{ u}_N$	1	1	0	0
$\hat{ u}_{D_L}$	1	1	0	Q_X
$\hat{ u}_{D_R}$	1	1	0	Q_X
Φ	1	1	0	Q_X

Three steriles N + pair of LH and RH dark neutrinos

Neutrino masses

$$\mathcal{L}_{
u- ext{mass}} = rac{1}{2} \overline{\widehat{
u}_f^c} egin{pmatrix} 0 & M_D & 0 & 0 \ M_D^T & M_N & \Lambda_L & \Lambda_R \ 0 & \Lambda_L^T & 0 & M_X \ 0 & \Lambda_R^T & M_X^T & 0 \end{pmatrix} \widehat{
u}_f + ext{ h.c.}$$

Inverse seesaw type mass mechanism

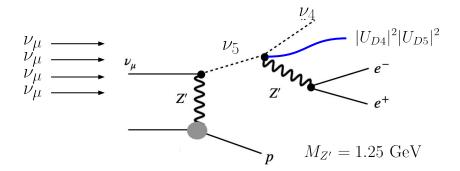
i ai libib builbiil

Phenomenology

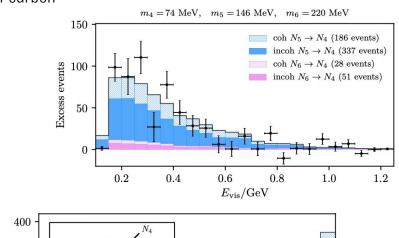
States of interest: ν_4, ν_5, ν_6

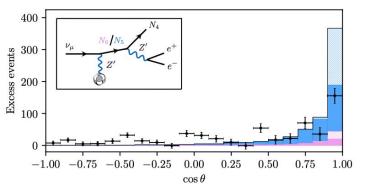
BP for this talk:

 $0.32 \begin{vmatrix} 0.05 \end{vmatrix} 74 \ 146 \ 220 \begin{vmatrix} 1.1 \times 10^7 \end{vmatrix} 2.2 \ 0.14$


Three heavy neutrinos at the **O(100) MeV** scale

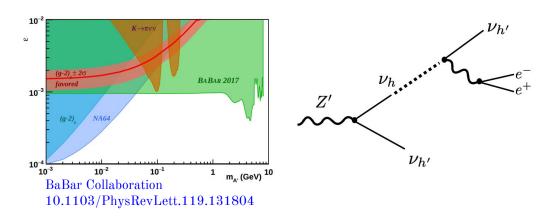
Two short-lived **O(mm~cm) decay lengths**


MiniBooNE

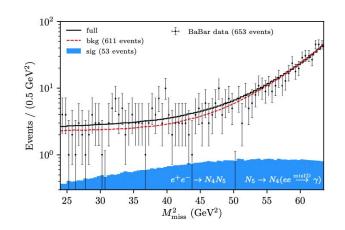

Incoming muon neutrinos upscatter incoherently (or coherently) off of carbon and bydragen pueloi (or protono)

and hydrogen nuclei (or protons)...

...producing a pair of boosted e+e- and possibly an invisible proton in the final state



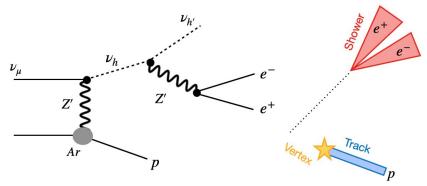
Dark photon and $(g-2)_{\mu}$


Minimal dark photon explanations of the muon $(g-2)_{\mu}$ all but ruled out

Strongest bound on our model comes from BaBar's search for an invisibly decaying dark photon in $e^+e^-\to \gamma Z'$

For our 1.25 GeV dark photon, require an **invisible branching ratio of below 0.22%** for an explanation of the muon $(g-2)_{\mu}$

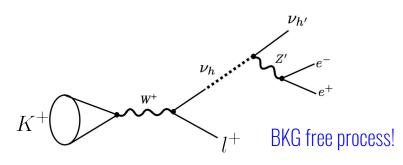
In fact, BaBar's monophoton data set appears to have an excess compatible with a semi-visibly decaying dark photon



 2.5σ preference for a dark neutrino signal

Searches for Dark Neutrinos

How can we search for our model at experiment?


@ MicroBooNE (work in progress)

Signal: Visible proton track + EM shower Or single shower

Possibility of distinguishing from single photon/electron MiniBooNE hypotheses with calorimetric information as well as shower-vertex distances

@ NA62 Kaon decays to heavy neutrinos and leptons

Sensitive to BOTH heavy neutrino masses

$$(p_K - p_l)^2 = m_h^2 (p_K - p_l - p_{ee})^2 = m_{h'}^2$$

$$p_{ee}^2 = (p_{e^+} + p_{e^-})^2 \le (m_h - m_{h'})^2$$

Summary

There is a need to fully explore the range of possible light dark sectors

★ Dark neutrino models are able to offer an alternative explanation for MiniBooNE excess

 \bigstar Simultaneously able to address a number of anomalous results: $(g-2)_{\mu}$, PS-191, E816, etc.

rovides us with a multitude of possible signatures to be searched for at e.g. MicroBooNE, NA62, IceCube etc.

Thank you!

