AGN as neutrino sources
from IceCube to radio neutrino telescopes

Xavier Rodrigues
DESY Zeuthen

XIX International Workshop on Neutrino Telescopes
INFN/Padova University
January 23, 2021
Astrophysical neutrino observations

- Diffuse neutrino flux observed above atmospheric background (first observed in 2013)

- Astrophysical neutrinos observed with energy up to ~50 PeV

- No strong correlation with known point sources
- No significant clustering observed yet
 -> Stacking limits, multiplet constraints

- But some hints of neutrino sources have already emerged (e.g. TXS 0506+056, PKS 1502+106)
Astrophysical neutrino observations

- Diffuse neutrino flux observed above atmospheric background (first observed in 2013)
- Astrophysical neutrinos observed with energy up to ~50 PeV

Future radio detection of extreme-high-energy (EHE) neutrinos

- No strong correlation with known point sources
- No significant clustering observed yet
 - \(-\rightarrow \) Stacking limits, multiplet constraints

- But some hints of neutrino sources have already emerged (e.g. TXS 0506+056, PKS 1502+106)
Cosmic ray interactions and the multi-messenger picture

- **Multi-messenger astrophysics**: attempting to unveil *common origin* to different cosmic radiations

- **Evidence** of a fraction of ultra-high-energy cosmic rays *heavier than protons*
Active Galactic Nuclei (AGNs)

- Lorentz factor Γ
- Relativistic jet
- Supermassive black hole
- Thin accretion disk
- Dust torus

Picture courtesy NASA, Dana Berry/Skyworks Digital
Active Galactic Nuclei (AGNs)

- Lorentz factor Γ
- Radio galaxy
- Hercules A (Hubble+VLA)
- Supermassive black hole
- Thin accretion disk
- Dust torus

Picture courtesy NASA, Dana Berry/Skyworks Digital
Active Galactic Nuclei (AGNs)

- Lorentz factor Γ
- radio galaxy
- Hercules A (Hubble+VLA)
- blazar
- supermassive black hole
- thin accretion disk
- dust torus

Credit: NASA/HST

Picture courtesy NASA, Dana Berry/Skyworks Digital
Active Galactic Nuclei (AGNs)

blazar

Credit: NASA/HST

radio galaxy

Hercules A (Hubble+VLA)

dust torus

one-zone models

Lorentz factor Γ

supermassive black hole

thin accretion disk

Picture courtesy NASA, Dana Berry/Skyworks Digital
Blazar family overview

Flat-Spectrum Radio Quasars (FSRQs)

Credit: Bill Saxton, NRAO/AUI/
Blazar family overview

Flat-Spectrum Radio Quasars (FSRQs)

Credit: Bill Saxton, NRAO/AUI/

Blazar gamma-ray luminosity [erg/s]

blazar redshift

Blazar family overview

Flat-Spectrum Radio Quasars (FSRQs)

BL Lacs

PKS 1502+106: example of a leptohadronic model

Protons accelerated to ~PeV (source frame)
-→ neutrinos peak at ~PeV (observer frame)
PKS 1502+106: example of a leptohadronic model

Protons accelerated to \(~\text{PeV}\) (source frame)

\(-\rightarrow\) neutrinos peak at \(~\text{PeV}\) (observer frame)

Gamma-ray - neutrino correlation

XR, Garrappa, Gao, Paliya, Franckowiak & Winter, accepted in ApJ
PKS 1502+106: example of a leptohadronic model

Protons accelerated to \(~\text{PeV}\) \((\text{source frame})\)

\(\rightarrow\) neutrinos peak at \(~\text{PeV}\) \((\text{observer frame})\)

Gamma-ray - neutrino correlation

XR, Garrappa, Gao, Paliya, Franckowiak & Winter, accepted in ApJ
PKS 1502+106: example of a leptohadronic model

Protons accelerated to \simPeV \textbf{(source frame)}

\rightarrow neutrinos peak at \simPeV \textbf{(observer frame)}

Gamma-ray - neutrino correlation

XR, Garrappa, Gao, Paliya, Franckowiak & Winter, accepted in ApJ
TXS 0506+056 (2014/15 IceCube signal)

Protons accelerated to 100 TeV (source frame)

-> neutrinos peak at 100 TeV (observer frame)

TXS 0506+056 (2014/15 IceCube signal)

Protons accelerated to 100 TeV (source frame)
-> neutrinos peak at 100 TeV (observer frame)

Protons accelerated to 100 TeV (source frame)
-> neutrinos peak at 100 TeV (observer frame)

Cascades "dump" the gamma rays into the MeV range (X-ray- neutrino connection)

Entirely hadronic

TXS 0506+056 (2014/15 IceCube signal)

CRs and neutrinos from the entire blazar population

CRs and neutrinos from the entire AGN population

\[
\nu \text{ production efficiency}
\]

\[
\nu \text{ production efficiency}
\]

\[
\epsilon_{\nu} \sim 10^{-3} - 10^{-1}
\]

\[
L_{\gamma} [\text{erg/s}]
\]

\[
\epsilon_{\text{UHECR}} \sim 10^{-3} - 10^{-1}
\]

\[
L_{\gamma} [\text{erg/s}]
\]

CRs and neutrinos from the entire AGN population

![Diagram showing neutrino production efficiency and UHECR efficiency for BL Lacs and FSRQs.](image)

- **Neutrino Production Efficiency**
 - BL Lacs: Increases with increasing gamma-ray luminosity L_γ[erg/s].
 - FSRQs: Slightly lower efficiency compared to BL Lacs.

- **UHECR Efficiency**
 - BL Lacs: Constant efficiency across gamma-ray luminosity L_γ[erg/s].
 - FSRQs: Decreases with increasing gamma-ray luminosity L_γ[erg/s].

Makes **lack of neutrino-source correlations** even more intriguing.

Indicates **decoupling** between neutrino and CR sources.
CRs and neutrinos from the entire AGN population

<table>
<thead>
<tr>
<th>Scenario 1: AGN accelerate CRs up to max 10 PeV</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Scenario 2: AGN accelerate CRs up to ~EeV</th>
</tr>
</thead>
</table>
CRs and neutrinos from the entire AGN population

Scenario 1: AGN accelerate CRs up to max 10 PeV

- Can explain IceCube sub-PeV to PeV flux

Scenario 2: AGN accelerate CRs up to ~EeV

CRs and neutrinos from the entire AGN population

Scenario 1: AGN accelerate CRs up to max 10 PeV

- Can explain IceCube sub-PeV to PeV flux
- UHECR connection lost
- Contribution from high-luminosity blazars must be suppressed (because of lack of correlations)

Scenario 2: AGN accelerate CRs up to ~EeV

CRs and neutrinos from the entire AGN population

Scenario 1: AGN accelerate CRs up to max 10 PeV

- Can explain IceCube sub-PeV to PeV flux
- UHECR connection lost
- Contribution from high-luminosity blazars must be suppressed (because of lack of correlations)

Scenario 2: AGN accelerate CRs up to ~EeV

XR, Heinze, Palladino, van Vliet, Winter, submitted to PRL

- Can explain Auger spectrum
CRs and neutrinos from the entire AGN population

Scenario 1: AGN accelerate CRs up to max 10 PeV

- Can explain IceCube sub-PeV to PeV flux
- UHECR connection lost
- Contribution from high-luminosity blazars must be suppressed (because of lack of correlations)

- Must obey IceCube limits at PeV and EHE
- Contribution from high-luminosity blazars must be suppressed (because of lack of correlations)

Scenario 2: AGN accelerate CRs up to ~EeV

- Can explain Auger spectrum

XR, Heinze, Palladino, van Vliet, Winter, submitted to PRL
The CR-neutrino connection

Cosmic rays

$E^3 J$ [GeV2 cm$^{-2}$ s$^{-1}$ sr$^{-1}$]

E [GeV]

XR, Heinze, Palladino, van Vliet, Winter, submitted to PRL
The CR-neutrino connection

EHE neutrino flux:
- Possibly at a level detectable by IceCube Gen2, GRAND 200k
- **Source neutrinos** should outshine cosmogenic
- Dominated by **bright FSRQs** (only ~600 objects resolved by Fermi-LAT)

Cosmic rays

Neutrinos

XR, Heinze, Palladino, van Vliet, Winter, submitted to PRL
Conclusion

Recent IceCube from the directions of known AGN are generally supported by multi-messenger modeling of cosmic-ray interactions.

Current challenges in the modeling point towards more sophisticated models -> which in turn require more multi-wavelength coverage and higher neutrino statistics.

If AGN accelerate CRs to 100 TeV - 10 PeV: may explain the IceCube diffuse flux -> hypothesis will soon be challenged by stacking limits and multiplet constraints.

If AGN accelerate UHECRs: may produce UHE neutrinos at levels detectable by future radio neutrino telescopes; these will be source neutrinos from a few powerful quasars -> favourable to directionality studies, time domain searches.
Backup
CRs and neutrinos from the entire blazar population

\[\epsilon_{\nu} \]

\[\epsilon_{\text{UHECR}} \]

\[L_\gamma \text{[erg/s]} \]

CRs and neutrinos from the entire blazar population

![Graphs showing CRs and neutrinos from blazars](image_url)
Blazars as sources of the IceCube neutrinos?

Diffuse neutrino flux

- BL Lacs must have high baryonic loadings to power the IceCube neutrino flux.
- FSRQ contribution must be highly suppressed not to violate stacking bounds.

Baryonic loading

- FSRQs contribution must be highly suppressed not to violate stacking bounds.
- BL Lacs must have high baryonic loadings to power the IceCube neutrino flux.

Neutrinos and CRs from the blazar family

Bright blazars are good neutrino emitters

Dim blazars are good CR emitters

Makes lack of neutrino-source correlations even more challenging

TXS 0506+056: the first neutrino blazar?

Muon track observed on Sep 22, 2017 (energy of 23.7±2.8 TeV)

Simultaneous gamma-ray flare

Evidence for 13±5 neutrinos from the same source back in 2014-15

Aartsen et al., 2018, Science 361, eeat1378

The 2017 neutrino event

Example of lepto-hadronic model:

X-rays from hadronic cascades constrain the baryonic loading of the source, but 0.2 neutrinos per year can be explained.
The 2014/15 neutrino flare of TXS 0506+056 — constraints

The graph shows the distribution of energy vs. frequency for different energy regimes: µeV, meV, eV, keV, MeV, GeV, TeV, and PeV. The data points are labeled with energy levels and corresponding energy distributions. The graph includes constraints from Padovani++, Swift BAT, Fermi LAT, and IceCube 2018. The 2017 gamma-ray level is indicated, and there is a note that 0.2 neutrino events per year are expected.
One-zone model

Explain up to 2 neutrinos without violating X- and gamma-ray fluxes

External-field (FSRQ-like) model

In-source cascades "dump" the hadronic photons into the MeV range (cf. Reimer++ 2019 ApJ 881)

TeV spectrum too soft due to photon annihilation with the disk emission

Model can explain up to 5 neutrino events (still 2 σ discrepancy with observation)

This result emphasizes the need for
• Better multi-wavelength blazar data
• Realistic numerical modeling

Assume a disk luminosity consistent with observations [Padovani et al. MNRAS 484 (2019)]