

The search for $0\nu EC\beta^+$ decay of ¹²⁰Te with CUORE

Alice Campani for the CUORE collaboration Università di Genova and INFN

Istituto Nazionale di Fisica Nucleare

The CUORE experiment for the search of neutrinoless double beta decay

- Allowed for even-even nuclei
- Beyond Standard Model: $\Delta L = 2$, Majorana neutrinos \bullet
- Useful information on the neutrino mass scale/hierarchy \bullet
- Matter/antimatter asymmetry via leptogenesis \bullet
- Main scientific goal search for $0\nu\beta\beta$ decay of ¹³⁰Te (isotopic abundance ~34%, $Q_{\beta\beta} \simeq 2527$ keV)
- Bolometric technique 988 TeO₂ crystals grouped in 19 towers, Adv. in High En. Phys. 2015 (2015), 879871
- **Tonne-scale detector** 742 kg of TeO₂, 206 kg of ¹³⁰Te
- Effective energy resolution (7.0 ± 0.4) keV FWHM at $Q_{\beta\beta}$
- Background index $(1.38 \pm 0.07) \cdot 10^{-2} \frac{\text{counts}}{\text{keV} \cdot \text{kg} \cdot \text{yr}}$ at $Q_{\beta\beta}$
- Located underground at LNGS in Italy: 3600 m we rock, muon flux is $\sim 10^{-6} \Phi_{\mu}$ at sea level

Half-life sensititivity (5y livetime): $S_{T_{1/2}}^{0\nu} = 9 \cdot 10^{25}$ y (90% C.L.), <u>Eur. Phys. J C77 (2017), 532</u>

A. Campani

- Half-life limits $10^{25} 10^{26}$ y
- Several decay modes, we focus on

 $(A,Z) + e^{-} \rightarrow (A,Z-2) + e^{+} (0\nu\beta^{+}EC)$

<u>Phys. Rev. C 87 057301 (2013)</u>

CUORE: Cryogenic Underground Observatory for Rare Events

Latest results on $0\nu\beta\beta$ of ¹³⁰Te:

<u>Phys. Rev. Lett. 124, 122501 (2020)</u>

See the talk from Guido Fantini

"The latest results from the CUORE experiment"

[presentation material]

XIX International Workshop on Neutrino Telescopes, 18-26 February 2021

2

Kinematics

- 120 Sn de-excites via X-ray/Auger e^- emission
- Q = 1714.8 keV $K_{\beta^+} + E_b = Q - 2m_e = 692.8 \text{ keV}$
- <u>Several decay signatures</u> within CUORE detector depending on where particles are absorbed: - the positron $\beta^+ \longleftarrow$

- the 511 keV
$$\gamma s \longleftrightarrow \gamma s$$

A. Campani

Neutrinoless positron emitting electron capture ($0\nu EC\beta^+$) decay of ¹²⁰Te in CUORE

1-crystal scenarios: either 1 γ escape (a), or full containment (b)

2-crystals scenarios:

A sees β^+ & B sees a γ (c), A detects $\beta^+ + \gamma$ & B sees other γ (d)

3-crystals scenario: full decay event containment each particle is absorbed by a different channel

XIX International Workshop on Neutrino Telescopes, 18-26 February 2021

3

The search for $0\nu EC\beta^+$ decay of ¹²⁰Te with CUORE: Method

Scenario	Particles detected	#crystals involved	Energy ranges $\Delta E_0 \dots \Delta E_{n-1}$ [keV]	Containment efficiency [ɛ]	$\frac{\varepsilon}{\sqrt{BI}} \left(\text{BI} = \left[\frac{1}{\text{keV kg yr}} \right] \right)$
www.	$\beta^+ + \gamma$	1	[1150,1250]	12.86%	0.14
man and a second	$\beta^+ + \gamma_1 + \gamma_2$	1	[1703,1775]	13.10%	0.33
	$\beta^{+} \text{ on xtal A}$ $\gamma \text{ on xtal B}$	2	[650,750], [460,560]	3.90%	0.33
A B	$\beta^{+} + \gamma_{1} \text{ on xtal A}$ $\gamma_{2} \text{ on xtal B}$	2	[1150,1250], [460,560]	13.54%	3.39
	$\gamma_{1} \text{ on xtal A}$ $\beta^{+} \text{ on xtal B}$ $\gamma_{2} \text{ on xtal C}$	3	[650,750],[460,560], [460,560]	2.06%	1.96

- MC simulations to evaluate containment efficiency
- **Simultaneous spectral fit** of the 5 scenarios **Bayesian** analysis developed with <u>BAT</u>
- Fit algorithm defined and intensively tested on **blinded data**

A. Campani

XIX International Workshop on Neutrino Telescopes, 18-26 February 2021

Bkg identification and spectra modeling based on blinded data and CUORE background model [arXiv:2012.11749]

The search for $0\nu EC\beta^+$ decay of ¹²⁰Te with CUORE: Results

ullet

A. Campani

Evaluation of the systematic effects (11% uncertainty on the ¹²⁰Te isotopic abundance) and data unblinding!

XIX International Workshop on Neutrino Telescopes, 18-26 February 2021

5