Recent Results from XENON1T and Multimessenger Future of XENONnT

XIX International Workshop on Neutrino Telescopes Ricardo Peres, University of Zürich

19.02.2021

XENON

The XENON Collaboration

- 27 institutions worldwide
- ~170 scientists
- Main goal: look for dark matter particles with a liquid xenon TPC

The XENON Collaboration

- 27 institutions worldwide
- ~170 scientists
- Main goal: look for dark matter particles with a liquid xenon TPC

The TPC detection principle

- Dual-phase (liquid+gas)
- Energy reconstruction
- 3D event reconstruction
- Event discrimination (electronic recoil vs nuclear recoil)

Phys. Rev. Lett. 119, 181302 (2017)

The TPC detection principle

- ER/NR events discrimination
- Particle ID (γ, α, β, n, WIMP)
- Fiducialization

- Since 2005
- Dual-phase xenon TPCs
- XENONnT currently under commissioning

Analysis channels

- Dark matter
- Solar neutrinos
- Supernova events
- Neutrino properties
- Atmospheric neutrinos

- WIMP-search
 - Spin-independent
 - Spin-dependent
- Sub-GeV
- Dark photons
- Axion-like particles

- Solar neutrinos
 - Boron-8
 - pp neutrinos
- Solar axions

- Supernova neutrinos
- Actively communicate with SNEWS
- Multi-messenger in DM experiments

- Neutrino properties
 - Double beta decay of ¹³⁶Xe
 - Double-electron capture in ¹²⁴Xe
 - Neutrino magnetic moment

Dark Matter results

- WIMP-nucleon spinindependent elastic scatter
- 1 tonne-year exposure
- No significant excess over background
- Most stringent WIMPnucleon cross section: 4.1×10⁻⁴⁷ cm² @ 30 GeV/c^{2,} 90% CL

Phys. Rev. Lett. **123**, 251801 (2019) Phys. Rev. Lett. **123**, 241803 (2019)

S2-only and Migdal effect results

- Extended DM search with ionization-only channel
- No complete background model (only limit setting)
- O(100 eV) energy threshold

Double Electron Capture in ¹²⁴Xe

- Observation of X-rays and Auger electrons, Q_{value}= 64,3 keV
- Longest half-life ever observed directly: 1.8 × 10²² years at 4.4σ significance
- First step for neutrinoless DEC search

Low-ER excess

- ER search in <30 keV range
- 3.30 fluctuation of background in 1-7 keV
- Several hypothesis:
 - Solar axions (3.4σ over bkg)
 - Neutrino magnetic moment (3.2σ over bkg)
 - Bosonic DM: ALPs and dark photons (3.oσ over bkg)
 - Tritium (3.2σ over bkg)

Boron- 8 solar neutrino search

- 8B neutrinos are a constant source of coherent elastic neutrino-nucleus scattering (CEvNS) events in the TPC, a background to WIMP search
- Lower detection threshold from 2fold coincidence
- Few measurements of the charge and light yields at this energy range
- Background dominated by mispairing of S1-S2 signals (AC)

DM mass [GeV/c²]

Boron- 8 solar neutrino search

- No excess observed.
- Constraints on:
 - 8B neutrino flux
 - L_y and Q_y at low-E
 - Light DM (leading for DM mass 3-11 GeV/c²

19/02/2021

 ε_{ee}^{dV}

From XENON1T to XENONnT

- Larger active mass
- Lower background level
- Upgrade on 1T infrastructure
- 1.5 m tall
- 1.3 m diameter

5.9 t liquid xenon (3x XENON1t)

Liquid xenon purification system (~2500 slpm)

Active neutron veto with Gd-loaded water

494 PMTs

Background reduction

Radon distillation column Rn-free purification pump Material selection and cleaning

Dedicated high energy readout

From XENON1T to XENONnT

- Finished installation summer 2020
- Currently under commissioning!
- In plot: S1 signal in gas atmosphere

- Core-collapse supernovae produce an enormous amount of O(10) MeV neutrinos (2.2x10⁵³ erg in SN1987a)
- SN neutrinos precede the EM radiation from minutes up to days
- Neutrino signal can be used as an early warning
- Signals from obscured SNe, in common with GW

XENONnT as a SN observatory

- In XENONnT, SN neutrinos mostly interact through CEvNS, a flavour independent channel
- Low-NR, O(1 keV), enhanced by ionization-only channel
- Constrained by mass, energy threshold and singleelectron background
- Expecting ~80 events in the TPC for a 27Mo@10kpc

$$\frac{d\sigma}{dE_r} = \frac{G_F^2}{4\pi} Q_w^2 M \left(1 - \frac{ME_r}{2E_v^2}\right) F(E_r)^2$$
$$Q_w^2 = \left[\left(\frac{1}{2} - 2\sin^2(\theta_w)\right) Z - \frac{1}{2}N\right]$$

A collaborative effort

- XENONnT will receive alerts from the SNEWS network and act on its data accordingly
- No pointing available, only timing
- Prompt response to SNe signals under study
- Actively contributing to SNEWS 2.0 (arXiv:2011.00035) under consideration

XENON University of Zurich^{UZH}

Summary and Outlook

- LXe TPCs can probe several rare-event processes.
- XENON1T made considerable improvements to the field throughout the years, both in dark matter, neutrino physics and technical design for lowbackground experiments
- XENONnT is now under commissioning and aims to improve upon XENON1T results in just a few months time
- XENONnT will prototype the use of DM experiments as multimessenger observatories, aiming to actively contribute to SNEWS and online SN neutrino detection
- DARWIN, as successor of XENON, will improve even further on these objectives (see Andrii Terliuk's talk, "Potential of neutrino physics with DARWIN", 25.02, 17:30.)

Backup Slides

XENON1T/nT detectors

- Dual-phase XENON TPC in a water passive and active muon veto
- Service building:
 - Xenon storage and recuperation
 - DAQ
 - Kr distillation column
 - Cryogenics and calibration system

Recent Results form XENON1T and Multi-Messenger Future of XENONnT

Rate [a.u.]

19/02/2021

DEC search

 Iodine activation modelling

Low-ER excess

- Solar axions (3.4σ over bkg)
- Neutrino magnetic moment (3.2σ over bkg)
- Bosonic DM: ALPs and dark photons (3.0σ over bkg)
- Tritium (3.2σ over bkg)

ER Energy Scale

- ER background MC-data matching validates framework
- Very low energy resolution at 136 Xe $O_{\beta\beta}$ =2.46MeV: (0.80±0.02)%
- Promising for near future neutrinoless double-beta decay results!

WIMP sensitivity projections

- A 4 t fiducial volume is considered
- After 20 t y, the expected sensitivity is 1.4×10⁻⁴⁸ cm² @ 50 GeV/c^{2,} 90% CL
- In 5 years, one more order of magnitude probed!

JCAP11, 031 (2020)

SNEWS 2.0: A Next-Generation SuperNova Early Warning System for Multi-messenger Astronomy

S. Al Kharusi¹, S. Y. BenZvi², J. S. Bobowski³, W. Bonivento⁴, V. Brdar^{5,6,7}, T. Brunner^{1,8}, E. Caden⁹, M. Clark¹⁰, A. Coleiro¹¹, M. Colomer-Molla^{11,12}, J. I. Crespo-Anadón¹³, A. Depoian¹⁰, D. Dornic¹⁴, V. Fischer¹⁵, D. Franco¹¹, W. Fulgione¹⁶, A. Gallo Rosso¹⁷, M. Geske¹⁸, S. Griswold², M. Gromov^{19,20}, D. Haggard¹, A. Habig²¹, O. Halim²², A. Higuera²³, R. Hill¹⁷, S. Horiuchi²⁴, K. Ishidoshrio²⁵, C. Kato²⁶, E. Katsavounidis²⁷, D. Khaitan², J. P. Kneller²⁸, A. Kopec¹⁰, V. Kulikovskiy²⁹, M. Lai^{30,31}, M. Lamoureux³², R. F. Lang¹⁰, H. L. Li³³, M. Lincetto¹⁴, C. Lunardini³⁴, J. Migenda³⁵, D. Milisavljevic¹⁰, M. E. McCarthy², E. O'Connor³⁶, E. O'Sullivan³⁷, G. Pagliaroli³⁸, D. Patel³⁹, R. Peres⁴⁰, B. W. Pointon^{41,8}, J. Qin¹⁰, N. Raj⁸, A. Renshaw⁴², A. Roeth⁴³, J. Rumleskie¹⁷, K. Scholberg⁴³, A. Sheshukov²⁰, T. Sonley⁹, M. Strait⁴⁴, V. Takhistov⁴⁵, I. Tamborra⁴⁶, J. Tseng⁴⁷, C.D. Tunnell²³, J. Vasel⁴⁸, C. F. Vigorito⁴⁹, B. Viren⁵⁰, C. J. Virtue¹⁷, J. S. Wang⁴⁷, L. J. Wen³³, L. Winslow²⁷, F. L. H. Wolfs², X. J. Xu⁷ and Y. Xu²³

SNEWS 2.0

- Real-time algorithms
- Lower threshold
- Multimessenger followup
- Pointing with neutrinos

