New Window into Neutrino Astronomy with Dark Matter Experiments

Supernova Forecast and Origin of Supermassive Black Holes

Volodymyr Takhistov Kavli Fellow

Kavli IPMU, University of Tokyo

Large Direct Dark Matter Detection Experiments

Look for particle DM interactions in detector → nuclear (electron) recoils

- Typical setup:
 - heavy target material (A ~ 40-130)
 - very low threshold (~ keV)
 - potentially scalable (Argon, Xenon)

GXe LXe particle

- Generation-2: ton-scale
 - → Generation-3: multi-ton scale

forward-looking benchmarks

Target	Mass	Threshold	Reference
	(tons)	(keV)	
Ar	300	0.6	ARGO
Xe	50	0.7	DARWIN

Neutrino-DM Connection

Probing DM deeper, experiments will encounter irreducible neutrino background
 → "neutrino floor" [Strigari, Figueroa-Feliciano, ...]

Important to consider target complementarity and different DM interactions

Magnificent CEvNS

- <u>Coherent elastic neutrino-nucleus scattering (CEvNS)</u> interaction with a whole nucleus
- Proposed 40+ years ago [Freedman] → recently observed [Akimov+ (COHERENT), Science, 2017]
- Dominant neutrino interaction for $Ev \leq 50 \text{ MeV}$
- Features:
 - all neutrino-flavor sensitivity
 - \circ x-section scales as $\sigma \sim N^2$

\rightarrow a new window into neutrinos and new physics

[Machado, Kopp, Lindner, Scholberg, Strigari, Dutta, Shoemaker, Denton...]

DM Experiments as Neutrino Telescopes

- $CE_{\nu}NS$ a problem for DM, but an opportunity for neutrinos
 - → DM experiments as "effective neutrino telescopes" (see also [Tamborra, Strigari, Horiuchi...])

- Complementarity with conventional neutrino experiments
 - enhanced coherent scattering
 - \rightarrow bypass IBD ($\overline{\nu}_e + p \rightarrow n + e^+$) threshold
 - \rightarrow probe all ν -flavors
 - very low energy threshold
 - → gain access to unexplored regimes ^{10²¹} E..... Example: geo-neutrinos [Gelmini, VT, Witte, PRD, 1812.05550]

New Astronomy Window from Dark Labs

Supernova Forecast

Historic v-Astronomy Breakthrough: Supernova 1987A

• <u>Core-collapse SN</u>: most energy released as neutrinos \rightarrow confirmed by SN1987A

Many unknowns \rightarrow hunt for v's from next Galactic SN (rate ~1/30 yrs) a major target

Last Stages of Stellar Evolution

• Fast changes in composition

Increase of density/temperature

Increase of neutrino emission

A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999)

Supernova Forecast with Pre-Supernova v's

Super-K-Gd will see hundreds v's within ~day before SN @ Betelgeuse (0.2 kpc) (...also KamLAND) [Simpson+ (Super-K), 2019]

 \rightarrow complementarity

Pre-SN neutrinos are low-energy (~ few MeV) → new opportunity for CEvNS!

Pre-SN v's in DM Labs: Signal

[Raj, VT, Witte, PRD, 1905.09283]

Pre-SN v's in DM Labs: **Detection**

[Raj, VT, Witte, PRD, 1905.09283]

Do Not Suffer Oscillation Effects

Work on Non-neutrino Background Essential

New Astronomy Window from Dark Labs

Unravelling Origin of Supermassive Black Holes

Supermassive Black Holes

 ${
m quasars} \ (M_{
m BH} \sim 10^9 M_{\odot})$

${ m galactic\ centers}\ (M_{ m BH}\sim 10^6 M_{\odot})$

Milky Way

Where do huge BHs come from? \rightarrow major problem

Volodymyr Takhistov (IPMU)

Supermassive Black Holes from Supermassive Stars (SMS)

Even with vigorous feeding, hard to grow huge BH
 → easy if start with sizable "seed"

• Pathways predict ($\gtrsim 10^4 \text{ M}\odot$) supermassive stars

How to test ?

*** seed could also be primordial BH from early Universe (e.g. [Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, PRL, 2001.09160])

Volodymyr Takhistov (IPMU)

Neutrinos from SMS Collapse

• SMS collapse releases enormous energy in neutrinos ~ (several orders x supernova)

...however, neutrinos are low energy, also redshifted (unknown, follows quasars?)

Neutrinos from SMS Collapse

 Exploit CEvNS to catch low-energy neutrinos with DM experiments (complementary to a search in neutrino experiments [Shi, Fuller, 1998; Shi, Fuller, Halzen, 1998])

Target	Mass	Threshold	Reference
	(tons)	(keV)	
Ar	300	0.6	ARGO
Xe	50	0.7	DARWIN
Pb	2.4	1.0	RES-NOVA

[Munoz, VT, Witte, Fuller, 2102.00885]

New Contribution to Diffuse Neutrino Background

Additional potential source of background for DM searches !

[Munoz, VT, Witte, Fuller, 2102.00885]

New DM Background

Significant uncertainty

Model	Mass (GeV)	$\sigma ~({\rm cm}^2)$
SI	4.34	1.02×10^{-50}
ED	4.15	4.41×10^{-48}
MD	3.79	2.18×10^{-42}
\mathbf{PS}	3.79	1.42×10^{-41}

[Munoz, **VT**, Witte, Fuller, 2102.00885]

Conclusions

• CEvNS open a new exciting window for neutrino astronomy

Future large DM experiments well positioned to exploit CEvNS
 → effective neutrino telescopes

 New opportunities to explore fundamental astronomical problems in a complementary way with conventional neutrino experiments